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Various examples of flow systems are known in which the study of conjugate flows (i.e. flows uniform in
the direction of streaming which separately satisfy the hydrodynamical equations) is crucial to the
understanding of observed wave phenomena. Open-channel flows are the best-known example, with which
remarkable qualitative similarities have been revealed in studies of other systems: for instance, it has
appeared in general that any pair of conjugate flows is transcritical (i.e. if one flow is supercritical according
to a generalized definition, then the other is subcritical). So far the common ground among theoretical
treatments has been defined only by intuitive analogies, and the aim of this paper is to give unity to the
whole subject by identifying the elements that are intrinsically responsible for universal properties. The
problem is accordingly considered in the form of an abstract (nonlinear) operator equation, whose solu-
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588 T. B. BENJAMIN

tion representing a conjugate flow is a vector in a linear space of finite or infinite dimensions: all known
examples are reducible to this form and other applications may be anticipated. The generalized treat-
ment on these lines must have recourse to new methods, however, of a more powerful kind than would
suffice for the ad hoc treatment of particular examples. A résumé of the required mathematical material
is presented in §2.

The main substance of the paper is in §3. In §3.1 the supercritical and subcritical classification of flows
is explained generally, being shown to depend on the eigenvalues of the Fréchet derivative of the non-
linear operator presented by the hydrodynamical problem. In §3.3 fixed-point principles are used to
define general conditions under which the existence of conjugate flows in a proposed category is
guaranteed, and also in this subsection a special argument is given to exemplify the transcritical property
of conjugate flows. Several aspects are covered in §3.4 by means of index theory, in particular the
problem of classifying a multiplicity of conjugate flows possible in a given system and the question of
what conditions ensure uniqueness. In §3.5 variational methods are used to account for the differences
in flow force that appear to be an essential attribute of frictionless conjugate flows (flow force is a scalar
property which is generally stationary to small variations about a solution of the hydrodynamical
equations). The last three sections of the paper present treatments of specific examples illustrating the
unified viewpoint given by the theory.

Proofs of two topological theorems used in §3.4 are presented in appendix 1, and in appendix 2 the
reasons for the variational significance of flow force are examined.

1. INTRODUCTION

In theories of steady waves in fluid media that are both dispersive and nonlinear, the problem is
often reducible to consideration of an equation, or system of equations, in the form

¢ =L (n) ¢, (1.1)

where &7(u) is a nonlinear operator depending on a positive parameter x which determines the
wave velocity. Equivalently, if axes are taken moving in step with progressive waves, or if the
waves are considered in the first place as a stationary phenomenon occurring in a flow, then
4 determines the steady-flow velocity in the direction of the principal axis x. The dependent
variable ¢ may represent, for instance, displacements or perturbations of a stream-function, and
the equation has the trivial solution ¢ = 0 corresponding to the primary, undisturbed state upon
which the waves are supposed to arise. In a number of important cases such an equation is found
to have at least one other solution independent of x, which therefore represents a waveless flow
distinct from the primary one. Thus there exists a non-trivial solution of the equation, say

¢ = A(/'L) ?, (1.2)

to which (1.1) reduces when x-dependence is neglected. The pair of flows represented by the null
solution and the second solution of (1.2) are called conjugate, and their properties are the subject
of this paper. Conjugate flows are capable of experimental realization, in a way that will be
explained presently, and an understanding of them is generally vital to the interpretation of
wave phenomena described by (1.1).

[An example serving to put these ideas into better focus is provided by the flow of continuously
stratified heavy fluid between horizontal planes y = 0 and y = 1 (cf. Ter-Krikorov 1963; also
§ 6 and appendix 2 below). The perturbation ¢(x,y) of a modified stream-function is found to
satisfy an elliptic equation

Ap+F(y,d3 ) = O,
in which F(y, ¢; u) is a nonlinear function of ¢ such that F(y, 0; 4) = 0. The boundary conditions
are ¢(x,0) = 0, ¢(x,1) = 0 and, if periodic waves are in question, a periodicity condition with
respect to a given interval of the horizontal coordinate x. Hence the problem is equivalent to solving

B(x,y) = BE{y, d(x,4);5 1}, (1.3)
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A UNIFIED THEORY OF CONJUGATE FLOWS 589

where #1is the linear integral operator whose kernel is the (positive) Green function for — A and
the specified boundary conditions. On the assumption that ¢ is independent of x, this equation

reduces to
$(y) = BF{y, $(y); u}, (1.4)

where B is the integral operator whose kernel is the one-dimensional Green function for —d?2/dy?
and the zero conditions at y = 0 and y = 1 (see equation (6.18)).]

The notion of conjugate flows is most familiar from the study of streams of water in open
channels. In classifying the possible steady frictionless flows along a uniform horizontal channel,
Benjamin & Lighthill (1954) pointed out that three physical constants can be used as parameters:
the volume flux Q; the total head, or stagnation pressure, R; and the ‘flow force’ S, defined as the
sum of horizontal momentum and pressure force. It appears that with two of these parameters
fixed, a certain interval within which the value of the remaining parameter may lie corresponds
to a continuous spectrum of periodic waves. For uniform flows, on the other hand, fixed values of
two of the parameters allow at most two values of the other, and the two possible flows thus
represented are conjugate in the general sense understood here. When the two admissible values of
the free parameter are nearly the same, they close the spectrum of periodic waves which are
long, approximately ‘cnoidal’ waves in this case; but otherwise the spectrum may fill only part
of the open interval between conjugate flows, the remainder being excluded by wave breaking.
In the elementary theory of hydraulic jumps (Lamb 1932, p. 280), @ and S are assumed to be
conserved through a steady transition between uniform flows, and it is concluded that the
conjugate flow with greater depth must occur on the downstream side because this flow has
smaller R, so that a loss rather than a gain of energy takes place at the transition. This model of
a dissipative but flow-force conserving transition has no simple counterpart in other systems, and
a more effective rationale for various phenomena, particularly for weak, undular jumps, is given
by consideration of conjugate flows for which @ and R are the same and S has different values.
It is to such energy conserving conjugate flows that the ideas of this paper are most naturally
applicable.t In other systems as in the open-channel example, a transition between two such
flows can be realized when an obstacle is fixed in the stream, for then the difference in S is balanced
by the external force holding the obstacle in place.

A well-known fact about open~-channel flows is that one in any pair of conjugates is supercritical
and the other is subcritical. 'These terms may be defined in several ways which turn out to be largely
equivalent, and the definition adopted in this paper is the one that bears most closely on the
general mathematical problem expressed by (1.2). First, a flow is called critical if an infinitesimal
wave of extreme length can be superposed on it: analytically this condition means that the
equation determining possible uniform flows has coincident solutions or, what amounts to the
same thing, that the derivative of the equation also has a solution. Then a supercritical state of
flow is defined as such that, with other features fixed, the x-component of velocity would have to
be scaled down in order to produce a critical state; and conversely the velocity would have to be

1 An interesting example of a quite different kind is given by a stream of viscous liquid flowing under the action
of gravity down an inclined channel. A change in the volume flux from @, to @, at entry to the channel will result
in a new régime becoming established whose front propagates downstream at the kinematic wave velocity
(@1~ Q) /[Z(Q,) —Z(Q,)], where XZ(Q) expresses the cross-sectional area of steady flows as a function of . From
a frame of reference moving with the wave front, there appears a transition between two flows that are respectively
supercritical and subcritical with respect to infinitesimal kinematic waves. Total head and flow force have no
meaning in this example, of course, because the fluid is viscous; but certain constants for uniform flows of this type
may be considered to complete a formal analogy with conjugate open-channel flows. If the density or viscosity of
the fluid is stratified, a more complicated problem is posed but it seems that present ideas are still broadly applicable.

49-2
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scaled up to change a subcritical state into critical. Thus, as the parameter 4 in (1.2) is taken to
depend inversely on the velocity scale, the flow is called supercritical or subcritical according
as jb < fe OT Ji > le, where pe is the critical value. If], in a sense to be made precise later, the
operator A(u) and its derivative are increasing with g, a useful interpretation of the terms super-
critical and subcritical is that the derivative operator is respectively too weak or too strong for
there to be another solution in the neighbourhood of the solution in question. A common implica-
tion concerning the original problem expressed by (1.1) is that a solution in the form of an
infinitesimal sinusoidal wave exists if the primary flow is subcritical, whereas none is possible if
the flow is supercritical.t These are often taken as defining properties (see, for example, Benjamin
1962, 1966), but they are tied to special attributes of the operator &7 (cf. appendix 2) and so the
present definition of supercritical and subcritical is more fundamental in the context of the
general conjugate-flow problem.

The transcritical property of conjugate flows has been discovered in studies of other flow
systems, and accordingly analogies with open-channel flows have appeared helpful. Another
remarkable property of open-channel flows is that the subcritical member of an energy con-
serving conjugate pair has the greater flow force S, and this too has been found to hold generally
among analogous systems, although its demonstration has been a matter of considerable com-
plexity. These ideas have been applied to the explanation of phenomena in vortex flows by
Benjamin (1962, 1965, 1967), and the relevant theory has been developed further by Fraenkel
(1967) and Sheer (1968). Applications to flows of density-stratified fluids have been discussed
by Benjamin (1966) and others, and a recent paper by Van Wijngaarden (1968) has indicated
another field of application to flows of liquid—gas mixtures.] Various interpretations propounded
in this previous work rest heavily on physical intuition, however, and the lack of analytical
correspondence between the subjects of analogies is obviously unsatisfactory from a theoretical
standpoint. The present aim, accordingly, is to develop a unified theory of conjugate flows by
studying the abstract equation (1.2), to whose form the hydrodynamical equations are reducible
in all examples so far investigated and for which other applications may be anticipated. Abstract
methods will be used in another paper (Benjamin 1971) dealing with conjugate vortex flows and
associated wave phenomena, the relation between the two topics being investigated further in
this particular application than can suitably be attempted here.

The gist of the general theory may be indicated at once by noting that the various arguments
to be used all reduce to obvious considerations in the simplest case, exemplified by open-channel
flows (§ 4 below), where ¢ is just a scalar variable. Then the equation determining possible flows

has the form ¢ = Alp; p), (1.5)

T The essentials of this aspect are these. Linearizing (1.1) about its null solution and supposing that the linearized

equation has a solution in the form £(x,y) = 2 (y) sin kx, where y is the coordinate (or system of coordinates) for the
flow cross-section, one generally obtains an x-independent equation

E=CHE,péE,
which is comparable with the linearized version of (1.2). If the effects of the parameters &% and x on the linear
operator C are opposing, then a solution with £2 > 0 (i.e. representing a periodic infinitesimal wave) will require
[ > p,, where the critical value g, is that for which (1.2) has an infinitesimal solution. The same considerations can
be made in respect of linearization about a nontrivial solution of (1.2) representing a conjugate flow.

1 In his study the gas is assumed to be distributed through the liquid in small bubbles of equal mass content,
whose concentration is uniform over each cross-section of the flow. Thus the theoretical model is one-dimensional,
and for moderately long waves of small amplitude it simulates dispersive and nonlinear effects analogous to those
in open-channel flows. Present ideas would still have bearing if these restrictive assumptions were relaxed, although
the formal analogy with long water waves would then disappear.
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A UNIFIED THEORY OF CONJUGATE FLOWS 591

where the right-hand side is a real function of ¢ in the ordinary sense. To emphasize the corre-
spondence with other cases covered by the theory, we may describe A(z; ), defined for all real
numbers z, as a mapping of the one-dimensional Euclidean space R, into itself. The physical
problem will generally provide that A(z; u) is a continuous function of both variables in a certain
range, and as was explained earlier it is so formulated that 4(0; u) = 0. Now suppose, for example,
that this function is continuous for all positive values of the arguments, also that

[z—A(z,p)| >0 if z<0, (1.6)
and Alz,u) 20 if z20. (1.7)

The condition (1.6) makes a negative solution of (1.5) impossible, and so attention focuses on the
properties of 4 on the set of non-negative numbers, which (1.7) shows to be mapped into itself
by A. From what has been said earlier it is apparent that the value of the right-hand derivative
at the origin,
A(0F; ) = Ay say,

determines whether the primary flow is supercritical or subcritical with respect to the same
‘mode’ as a possible conjugate flow (i.e. with respect to infinitesimal long-wave disturbances for
which the variable ¢ takes only non-negative values). Let A, = 1 when g = u.. Moreover,
suppose that x depends inversely on the velocity scale of the flow, and that

A'(z,a) > A'(2;8) >0 if a>b>0,z>0.

Then clearly the primary flow is supercritical, critical or subcritical accordingly as p < pe,
Mt = je Or > pe. Similarly, the state relative to critical of a conjugate flow represented by a
non-trivial solution of (1.5) depends on whether

A'(sm) = Ay, 52y,
is greater or less than 1.
Various conditions can be stated that will ensure the existence of a positive solution of (1.5).
For instance, let us assume that 4 has an asymptotic derivative,

A,(OO;/”’) = Aoo, say,

which by virtue of the prior assumption (1.7) cannot be negative. Then, together with the
continuity of 4 (which is obviously essential), either of the pairs of conditions

Ap>1, A<, (1.8)
or Ap<1l, A,>1 (1.9)
is evidently sufficient for the existence of a point ¢ > 0 satisfying (1.5). Possibilities allowed by
the conditions (1.8) are illustrated in figure 1. It is clear that uniqueness of the non-trivial

solution ¢ cannot be guaranteed without some additional assumption. But suppose, for instance,
that in keeping with (1.8) the nonlinear function A satisfies

A(tzyp) > tA(zzp) if 2>0,0<t< 1. (1.10)

The conditions (1.8) and (1.10) evidently imply a unique positive solution ¢, and moreover
that A4 < 1. Thus there is a unique supercritical flow conjugate to the subcritical primary flow.
This case is illustrated in figure 1 (a).
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592 T. B. BENJAMIN

Examples in which the solution may not be unique still bear out the transcritical property of
conjugate flows in obvious respects. For illustration, let us égain take the primary flow to be
subcritical and assume the second condition in (1.8) also to be satisfied. Then, if the case A, = 1
is excluded as a possibility, the following facts become immediately evident on consideration of
the possible graph of the function 4, as in figure 1 (b): The number of positive solutions must be
odd, say 1+ 2N, of which 1+ N represent supercritical conjugate flows (A; < 1) and N represent
subcritical conjugate flows (A4 > 1). The flow represented by the least ¢, which may be called

Ak A}

o -
ny

Qo

Spe--

S

no
&————————————
N‘}

@ )]

A(Z) A

|
(0] $1

|
© 92

Ficure 1. Positive solutions of equation (1.5).

z

the principal conjugate respective to the given primary flow, is always supercritical. Taken in
order of size, the remaining 2N solutions form N transcritical pairs. Corresponding statements,
with the words supercritical and subcritical interchanged, can be made if instead of (1.8) the
conditions (1.9) are satisfied. A qualification referring to the exceptional possibility 45 = 1 is
clearly necessary to a general account of even this simplest example, and so it is to be expected
that the possibility of precisely critical conjugate flows will obtrude as a slightly awkward aspect
of the abstract theory [cf. Fraenkel’s (1967) discussion of conjugate vortex flows]. This possibility
appears physically extraordinary, however, and in cases such as illustrated in figure 1 (c) the
solution is unstable in the sense that the slightest change in the specifications of the problem
may make it disappear.

Counterparts of the foregoing conclusions will be established for the general class of problems
implied by equation (1.2), whose solution ¢ can always be regarded as a vector in some appro-
priate linear space with finite or infinite number of dimensions. To illustrate this viewpoint,
consider the example of a composite fluid which is stably stratified in z+ 1 discrete layers and
bounded by horizontal planes. There are = free interfaces, and so the solution giving the vertical
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A UNIFIED THEORY OF CONJUGATE FLOWS 593

displacements of these relative to their levels in the primary flow can be considered as an
n-component column vector. Equation (1.2) then has a matrix form, representing a set of
simultaneous equations

¢i = Ai(¢1> ¢2a“-: ¢n; /") (7' =1, 2,"',”), (1'11)

which involves z distinct nonlinear functions 4; (see § 5 for a specific example with n = 2). Corre-
spondingly, when a flow system in question has an infinite number of degrees of freedom, as in
the example of a continuously stratified fluid, the solution may be considered as a vector in an
infinite-dimensional Banach space. The theory then depends on the assumption that the non-
linear operator A is completely continuous (or compact), which extends the continuity require-
ment that is essential in the finite-dimensional case—as was pointed out above regarding the
case of just one dimension. In the treatment of the abstract problem topological methods will
largely be used, in particular concerning the geometrical properties of cones in Banach spaces.
Fixed-point principles will be used to establish conditions under which equation (1.2) has a non-
trivial solution of a proposed kind; and with regard to the supercritical and subcritical charac-
terization of flows, it will be found helpful to introduce the ideas of, first, the Fréchet derivative
of the operator A and, secondly, the Leray—Schauder index of a fixed point. Finally, an account
of the essential flow-force differences between conjugate flows will be developed by means of
a variational argument. When a new dependent variable § is introduced and the governing
equation is recast in the form § = G, where the new operator G is such that the vector u — Gu
is the gradient of a functional /() defined on a Hilbert space (i.e. of a scalar function of position
in the space), then the solution { is a stationary point of 4 and it generally turns out that 4({)
gives the relative value of flow force for the respective conjugate flow. (The reason for the latter
property will be discussed in appendix 2.) A similar argument was applied to the study of
conjugate vortex flows by Benjamin (1962), relying on methods of the classical calculus of
variations; but Hilbert-space concepts appear to be needed to make a general approach of this
kind exact.

The required mathematical propositions are presented in § 2. Accounts of the theories from
which this material is taken may be found particularly in three works by Krasnosel’skii: his
review article on problems of nonlinear analysis (1958), his monograph on topological methods
applied to the study of nonlinear integral equations (1964), and his monograph on positive
solutions of operator equations (1964). Since frequent reference is made to these works, the
abbreviations K (a), K () and K (¢) are used for them respectively. In § 3 applications to the
generalized hydrodynamical problem are considered and a theory of conjugate flows is derived.
The last three sections of the paper deal with examples of different flow systems which illustrate
the unified viewpoint given by the theory.

It must be recognized that these examples are amenable to ad hoc treatment by means
considerably simpler than the abstract theory, and our main object is not to develop methods
for solving particular problems. Rather, it is to demonstrate the mathematical unity of an
interesting range of problems in fluid dynamics whose treatments by traditional analytical
methods appear superficially to have little in common. In this way a rational foundation is given
to the intuitive analogies that have hitherto been drawn, regarding wave phenomena seemingly
related to familiar open-channel effects.

To anticipate extensions of the present work, it is noted that most ideas of the abstract
conjugate-flow theory are also applicable to the more general problem represented by equation
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(1.1). Thus solutions describing waves may be proved to exist and classified in much the same
way as the x-independent solutions considered here. The use of index theory, as exemplified in
§ 3.4, appears particularly promising in this regard. A few facts concerning the more general
problem are presented in appendix 2, being required to elucidate aspects of the conjugate-flow
theory.

2. MATHEMATICAL RESUME

This section of the paper summarizes the concepts and results from functional analysis that
will later be used in the discussion of the conjugate-flow problem. It is intended particularly for
readers without much familiarity with functional analysis, and aims at being sufficiently detailed
to enable them ab initio to understand the gist of all the subsequent arguments.

2.1. Definitions

We take E to denote a real Banach space. The norm of an element u€ E is written |||, and the
zero element of £ is denoted by 6. We shall refer to a particular element as a point in the space,
or as a vector having the magnitude |[«| and the direction of the ray from 6 to the point .
Examples in view include: the space C of continuous functions «(y) defined on the closure D of
a bounded domain D in a Euclidean space R, (e.g. the interval [0, 1] when y is a scalar), for

which the norm is ,
lu] = max |u(y)|
yebD

(Liusternik & Sobolev 1961, pp. 10 and 18); the spaces L, (p > 1) of (equivalence classes of)
functions that are pth power summable on a bounded domain D, for which the norms are

Jul = ([ juto)1»a)

in particular the Hilbert space L, (Liusternik & Sobolev 1961, p. 16); and also Euclidean spaces
R, with a finite number of dimensions.

A set M < E is convex if, for any two points « and v belonging to A, the straight-line segment
connecting these points also belongs to A: i.e.

tu+(1—-thveM if 0<i< 1.

A closed convex set K < E is called a cone if the following conditions hold: (i) if u€ K, then aue K
for all @ > 0; and (ii) for each pair of points z and —« (z + ) belonging to E, at least one does
not belong to K (K (4), p. 240; K (¢), p. 17; Liusternik & Sobolev 1961, p. 128). Thus a cone
comprises a bundle of rays originating from the zero point 6, no two of these rays having opposite
directions. The collections of non-negative (or of non-positive) functions in the spaces C and L,
are the best-known examples of cones, but many other cones can be defined in these spaces. In
§ 6 we shall consider a cone in C which is narrower than the cone of non-negative functions. In
the finite-dimensional space R,, any one of the 2" quadrants serves as an example of a cone.
Already used in § 1 to illustrate principles, the set of non-negative numbers considered as a subset
of R, is the most rudimentary example of a cone. Elements of a cone will be called positive elements
or positive vectors.

A cone is said to be so/id if it contains interior points, i.e. if it contains some sphere completely.
The cone of non-negative functions in the space C is solid: any positive constant, for example,
amounts to an interior point. In the spaces L,, however, cones of non-negative functions are not
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solid. Various examples of solid and non-solid cones in finite-dimensional spaces can easily be
defined: any cone in R, will be a non-solid cone in R,, with m > n.

[This is a suitable place to cover a detail arising in applications of the subsequent theory. It is
often the case that a solution is a continuous function which vanishes on the boundary D of the
domain of definition D (e.g. at the end-points of [0, 1]) but is positive on the open domain D.
The solution may be established in the first place as an element of the cone of non-negative
functions in C, but such a function is evidently not an interior element of the cone and this fact
prevents the direct use of certain propositions. The following idea may then be useful. Consider
the collection of continuous functions »(y) vanishing on D and such that

lv(y)]

oy = maxpoy < % (2.1)

where V(y) is a given continuous function that satisfies ¥ > 0 on D, V = 0 on @D, and whose
inward normal derivative is positive everywhere on 0D (e.g. take V = y(1—y) if D is [0, 1]).
This collection of functions becomes a Banach space under the norm (2.1). Functions »(y) that
are upwardly convex (see § 6.4) form a solid cone in this space, whereas the cone formed by such
functions in C has no interior.]

A cone K is called reproducing if every element u€ E is expressible in the form u = v —w with
v, we K. Any solid cone is reproducing, and cones of non-negative functions in the spaces L, are
also reproducing (K (¢), p. 17). A cone K is called normal if a number & > 0 exists such that
|u+v| > ¢ for any u, ve K with |u| = |o] =1 (K (¢), § 1.2; Liusternik & Sobolev 1961, p. 128).
A necessary and sufficient condition for the normality of a cone is that the norm in E be semi-
monotonic, which means that for arbitrary u, veK the statement » —ue K implies [u] < N,
where N is a constant independent of « and v (K (¢), p. 24). The norm is called monotonic if
N = 1in the preceding inequality. Cones of non-negative functions in the spaces C and L, are
normal, which follows from the obvious fact that the norms in these spaces are monotonic.

The specification of a cone K allows a partial ordering of the space E, which means that for
certain pairs of elements , ve E the ordering relation # < v is defined and the symbol < implies
the usual properties associated with this symbol.t The axiomatic conditions of a partial ordering
are provided by writing « < v if v—ueK (K (), p. 240; K(¢), §1.1.3). Then, in particular,
u > 0 if ue K. When K is a cone of non-negative functions in C or L, the partial ordering has
a simple interpretation. In the case of C, the notation # < v means that u(y) < v(y) (in the usual
sense) for all values of the independent variable y; and in the case of L,, the implication is that
u(y) < v(y) for almost all values of y. Unless a cone of non-negative functions is specifically in
question, however, subsequent statements involving the symbol < rest on the axiomatic
definition.

An operator A acting in the space E (i.e. AueE if ue E) is called completely continuous if it is
continuous and transforms every bounded subset of E into a relatively compact set—that is, a set
inwhose closure every sequence of elements contains a strongly (in norm) convergent subsequence
(Liusternik & Sobolev 1961, p. 129). A less restrictive property similarly defined is that of an
operator which is completely continuous on a certain subset of E, e.g. a cone. In finite-dimensional
spaces every bounded set is relatively compact (the extended Bolzano—Weierstrass theorem), and
so the continuity of an operator suffices for its complete continuity in the sense defined.

T (i) fu< v, thenou <avfore > 0andau > avfora < 0. (ii) Ifu < vand v < u, then u = v. (iii) If u, < v; and
Uy < vy, then uy +uy < 0,40, (iv) Ifu < vand v < w, then u < w.

50 Vol. 269. A.
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An operator A, acting in a space which is partially ordered by means of a cone K, is called
positive if it maps K into itself, i.e. if
AueK for ueKk.

The operator is called monotonic on K if u < v (u,v€K) implies that Au < Av. Linear positive
operators are obviously monotonic, but nonlinear positive operators are not necessarily so.

A nonlinear operator A acting in the space £ is said to be differentiable at the point ¢ in the
direction £ if the abstract function A (¢ +€£), having values in E, is differentiable with respect
to € at € = 0. The operator is said to be differentiable in the Fréchet sense if the increment
A(¢p+h) — A can be expressed in the form

A(g+h) —Ap = A'()h+w($,h) (heE), (2.2)

where A’(¢) is a linear operator and
lim
1h1—>0 ”h”

(K (@), p. 36; K (b), p. 135; K(¢), §3.1.1). The linear operator A’(¢) is called a sirong Fréchet
derivative if in (2.3) a strong limit is implied (i.e. if the quotient on the left-hand side converges

o) _ g (2.3)

in the norm of E). Then in particular, if 2 = €£ with ||| = 1, the remainder w has the property

(3, 8) = o(e).

If A is completely continuous, then the strong Fréchet derivative A’(¢) is also completely
continuous (K (3), p. 135).

For the purposes of some subsequent arguments it will appear sufficient that the operator A
should be differentiable only in the directions of a cone K. If (2.2) and (2.3) are qualified by the
restriction A€ K, then A’(¢) is described as the strong Fréchet derivative with respect to the
cone K. The existence of this Fréchet derivative implies that the derivative with respect to the
cone (according to the first, simpler definition) also exists and the two derivatives are the same
(K (¢), §3.1.2). This idea bears particularly on the question of linearizing the equation ¢ = A¢
in the neighbourhood of X close to the zero point 6. We are concerned with operators such that
A0 = 0, and hence we may say that ¢ = A¢ has an infinitesimal solution in K if the linear equation

E=A0)¢
has a non-zero solution in X.
Suppose that
Ay = A'(0) u+w(u) (uek), (2.4)
where A’(c0) is a linear operator. This operator is called a strong asymptotic derivative with respect
to the cone K if, for uek, o]
. w(u
o 7 (29)

(K (), §3.2.1).
If a number A, exists such that the linear equation

A =A'(0)¢E (2.6)

hasasolution £ K (¢ + 0), wesay that the operator A’ () has a positive eigenvector £ corresponding
to the eigenvalue A, With the same meaning we shall refer later to positive and other eigenvectors
and corresponding eigenvalues of the asymptotic derivative A’(c0) and of the derivative operator
A’(¢) at a particular non-zero point ¢.
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A wide class of linear operators, to which A’(¢) may belong, is defined as follows (K (), ch. 5,
§5; K (¢), ch. 2). Let 4, be a given non-zero element of K. A linear positive operator B is called
uy-bounded (or, in K (¢), uy-positive) if for every ueK (u & 0), a positive integer » and positive
numbers ¢, £ can be found such that

auy < B < fu,.

Operators in this class have the following properties when the cone K is reproducing. (i) If B is
completely continuous, there exists an eigenvalue to which a positive eigenvector corresponds.
(ii) Such an eigenvalue is always simple (i.e. no other eigenvector corresponds to it). (iii) There
cannot be more than one such eigenvalue. (iv) This eigenvalue is greater in absolute magnitude
than any other eigenvalue. It is helpful as regards the hydrodynamical problem that, in respect
of operators that are positive on a cone of non-negative functions, the class includes linear
integral operators whose (non-negative) kernels are the Green functions for boundary-value
problems of the Sturm-Liouville type (see § 6 and appendix 2).

2.2, Fixed-point theorems
A solution ¢ €K of the equation

¢ = Ad, (2.7)

where A is a positive nonlinear operator, amounts to a fixed point of the mapping by A of K into
itself. Various theorems concerning the existence of non-zero fixed points in a cone have been
proved by Krasnosel’skii, and we now state four of them which collectively appear to cover the
general conjugate-flow problem (see § 3.2). For proofs of these theorems reference may be made
to Krasnosel’skii’s monograph (K (¢),ch.4), but we note that they are virtually proved, by
considerably simpler arguments, in appendix 1 to this paper.

In each of the following theorems A is assumed to be a positive completely continuous operator
on K such that A6 = 6.

TrrOREM I (K (¢), theorem 4.12; see also §4.4.4). Let
u—Au¢ K if uek, |u|=r>0, (2.8)
and Au—u¢K if uek, |u|=R>r. (2.9)
Then A has at least one fixed point ¢ in K such that r < ||¢|| < R.

Krasnosel’skii proved this theorem under a slightly weaker condition in place of (2.9), namely
that Au— (1+€)u¢ K for all € > 0if ueK, |u| = R [a similar modification may be made to
(2.10) below]. But this refinement does not seem worth inclusion for the purposes of the conjugate-
flow theory in § 3. It is usually the case that the conditions (2.8) and (2.9) hold also for ||u|| < 7

and [« > R respectively, although this is not essential to the theorem, and the description given
by Krasnosel’skii to this case is that the operator A ‘compresses’ the cone.

TreOREM II (K (¢), theorem 4.14; see also §4.4.4). Let
Au—u¢ K if uek, |u|=r>0, (2.10)
and u—Au¢K if uek, |u|=R>r. (2.11)

Then A has at least one fixed point ¢ in K such that r < |¢| < R.
In the usual case that the conditions (2.10) and (2.11) hold also for ||u| < r and |u«|| >R
respectively, Krasnosel’skii’s description is that A ‘expands’ the cone.
50-2
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TreoreM III (K (¢), theorem 4.11). Let A have a strong Fréchet derivative A'(0) and a strong
asymptotic derivative A’(00) with respect to the cone K. Let A’ (o) not have eigenvalues greater than or equal
to unity in magnitude. Let A'(0) have a positive eigenvector corresponding fo an eigenvalue Ag > 1 [see
equation (2.6)], and let A’'(0) not have a positive eigenvector corresponding to an eigenvalue equal to unity.
Then A has at least one non-zero fixed point in K.

TrEOREM IV (K (¢), theorem 4.16). Let the first condition of theorem 111 be satisfied. Let A’(0) not
have a positive eigenvector corresponding to an eigenvalue greater than or equal to unity. Let A’(00) have a positive
eigenvector corresponding to an eigenvalue Ay, > 1, and let A’(0c0) not have a positive eigenvector corresponding
to an eigenvalue of unity. Then A has at least one non-zero fixed point in K.

Theorems I and III are often interchangeable in applications, as also are IT and IV. In fact,
the conditions (2.8) and (2.9) of theorem I may in various ways be inferred from the conditions
of II1, if r is taken to be sufficiently small and R sufficiently large (see K (¢), § 3.3); and similarly
the conditions (2.10) and (2.11) of IT may be inferred from the conditions of IV (K (¢), §3.4)-
A simple example of this will be given in § 5. It can be shown directly, moreover, that the existence
of a non-zero fixed point in K is guaranteed if these various conditions are appropriately
recombined: that is, if the restriction on the behaviour of the operator A near the point 6 is taken
from one of the theorems I and III (or IT and IV) and is combined with the restriction from the
other theorem on the behaviour of A for elements with large norms [K (¢), p. 140; see also
appendix 1 to the present paper].

We observe that all of these fixed-point theorems become obvious statements in respect of the
one-dimensional space R,. The rudimentary version of theorem III and theorem IV was
noted in § 1.

2.3. The rotation of a completely continuous vector field

Let T denote some bounded domain of the Banach space E, and I' the boundary of T
(T = TuTI'). We shall assume that the intersection of I" with any finite-dimensional subspace
admits triangulation (e.g. I"is a sphere). In describing @ as a vector field given on 7, we mean
that to every ue 7T there corresponds a vector ®(u) from the space E. We particularly consider
vector fields in the form @ = I— A, where I is the identity operator and A is a completely
continuous operator. Such fields are called completely continuous (K (a), p. 371; K (3), p. 105).

An important concept now to be recalled is the rotation (or topological degree) of a vector field
@ on the boundary I' of 7. It is assumed that @ does not include the zero vector on I [i.e.
®(u) & O ifucl’]. Then, in the case of finite-dimensional spaces, the rotation may be defined as the
degree (power) vy of the mapping

D (u)
D, (u) = 777 (uel’

= @y <"
of @ into the unit sphere (i.e. the set ||ju| = 1, ue E). For a basic explanation of this statement,
reference can be made to books on topological methods [see, for example, Aleksandrov 1960;
K (4), ch. 2, §§ 1 and 2; also Berger & Berger 1968, § 3.1 (iii)]. The definition may be extended to
completely continuous vector fields in infinite-dimensional Banach spaces by considering
finite-dimensional subspaces £,,, whose 7 elements can be used to approximate vectors z€ I" with
a certain accuracy improving with . If P, is defined as the operator that projects the relatively
compact set A(I") on E,, the degree v,, of the mapping

u— P, Au
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is found to be independent of the selection of the approximating subspace provided z is large
enough, i.e. y,, = yyifn > N. Accordingly, v, is established as defining the rotation y(I") of the
completely continuous vector field I— A on I (see K (b), pp. 105-108; Berger & Berger 1968,
§3.1).

The following simple facts are useful. (i) The rotation on I” of the vector field ®(u) = u—u*,
where u* is a fixed vector in E (u* ¢ I"), is equal to unity if «* € T and equal to zero if u* ¢ T.
(i) The rotation of a field @ is equal to zero if the directions of the vectors ®(u) for ue I" are all
different from the direction of a given vector u* € E, i.e. if none of the vectors ®(u) equals au®,
where a is a positive constant.

Two completely continuous vector fields ® and ¥ defined on I" are said to be homotopic if
foruel, 0 <t <1 an operator X(x,?) exists which is completely continuous as a mapping of
the topological product I" x [0, 1] into E, and which is such that the completely continuous fields
F(u,t) = u—X(u,t) on I'satisfy

Fu,t) £ 60 (0<t<1), }

and F(u,0) = ®(u), F(u,1) =¥ (). (2.12)

It can be shown that completely continuous vector fields that are homotopic have the same rotation (K (b),
p. 108; Berger & Berger 1968, theorems 3-8). v

A point ¢ at which the vector field @ = I — A vanishes is a solution of the equation ¢ = Ag,
and as already explained we describe it as a fixed point. A well-known and extremely useful
principle due to Leray & Schauder is that if the completely continuous field ® does not vanish
on I', the boundary of T, and if the rotation of @ on I is not zero, then at least one fixed point
of ® exists in T (K (a), p. 373; K (), p. 123). It will be pointed out later, in § 3.4, that the
fixed-point theorems stated in § 2.2 can be considered as instances of this principle.

Let ¢, be an isolated fixed point of the field ®, in the sense that no other fixed point lies in some
neighbourhood of ¢;. Then the field @ will not vanish on any sphere of sufficiently small size
centred on ¢,, and the rotation v, of the field on every such sphere will be the same. This rotation
is called the index of the fixed point. Now suppose that the field @ is completely continuous on
T'u I', has no fixed point on I', and has isolated fixed points ¢, @, ..., ¢, in T, where the number
k of fixed points is necessarily finite (K (), p. 109). Then, according to a fundamental theorem
established by Leray & Schauder, the sum of their indices equals the rotation of @ on I, thus

Vit Yoty =y (2.13)
(K (a),p.379; K (), p. 109).

The following more general principle, which evidently includes (2.13), will also be used later.
Let T ( = 1,2, ...,m) be mutually non-intersecting sub-domains of 7, with boundaries I}
(y=1,2,...,m). Suppose that the vector field @ is completely continuous on 7" U I’ and has
fixed points only in the 7}, none being on their boundaries. Since @ does not vanish on I" or on
the I, the rotations y(I") and y(I’;) are defined, and we have

(') =v() +y (L) + . +y (). (2.14)

2.4. Evaluation of the index of a fixed point

To find the index y of a fixed point, use can be made of the fact that homotopic completely
continuous vector fields have the same rotation. Let ¢ be a fixed point of the completely con-
tinuous ficld @ = I— A, and let the operator A have a strong Fréchet derivative A’(¢) at this
point. If we assume that unity is not an eigenvalue of the linear operator A’(¢), then it is easy
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to prove—as can be expected from the geometrical interpretation of the derivative—that ¢ is
an isolated fixed point. Also, putting « = ¢ + £, one can show that @ is homotopic to the linear
completely continuous field I—A’(¢) on a sphere |i| = p with p sufficiently small (K (b),
pp. 136, 137). A simple case is presented when A’(¢$) does not have positive eigenvalues either
equal to or greater than unity, for then the completely continuous fields

F(ht) = h—tA(§)h (0<t<1)

evidently have no zero vector on the sphere. Thus I— A’(¢) is homotopic to I, whose rotation is
unity, and therefore y = 1.

The case when A’(¢) has eigenvalues greater than unity is more subtle but is covered, together
with the preceding case, by the following theorem which again is due to Leray & Schauder (K (a),
p. 375; K (4), p. 136; Rothe 1951, theorem 5.1). (The essentials of the usual proof of this theorem
will be recalled for a special purpose at the end of § 3.4.) Assuming conditions as stated in the last
paragraph, in particular that unity is not an eigenvalue of A’(¢), we have that the index of the
isolated fixed point ¢ is given by ,

y = (=1 (2.15)
where /£ is the sum of the multiplicities of the eigenvalues of A’(¢) that are greater than unity.
(Here the term multiplicity means the number of linearly independent eigenvectors corre-
sponding to a particular eigenvalue.) If the linear operator A’(¢) has only simple eigenvalues
(i.e. of unit multiplicity), then g in (2.15) is just the number of eigenvalues greater than unity.
Such is the case for integral operators whose kernels are the Green functions for boundary-value
problems of the Sturm-Liouville type (cf. last paragraph of § 2.1).

In the exceptional case when unity is an eigenvalue of A’(¢) at a fixed point ¢, the index of ¢
may still be calculable. Indeed, this case is of central interest in the theory of bifurcation points
for nonlinear operators, and many results are available. In developing the conjugate-flow
theory, however, we shall only need to consider the indices of non-zero fixed points in a cone
(§3.4), and so the exceptional case appears to have no fundamental importance. It might
reasonably be excluded by assumption, but the following proposition will be useful in extending
the range of our conclusions (see K (a), pp. 376-378; K (b), ch. 4, § 4, particularly p. 223). Let
A’(¢p) have an eigenvalue equal to unity, and suppose that in the neighbourhood of the fixed
point ¢ the operator A is representable in the form

A(+h) = Ap+A'(¢)h+Ch+Dh (heE),

where C and D are completely continuous operators satisfying the following conditions. First,

is h th
C is homogeneous, thus C(ah) = a*Ch (o = const.),

where s is an integer greater than unity. Secondly, C satisfies a Lipschitz condition
[Chy— Cho|l < q(p) |hy—ho| if |2, o] < p,

where ¢(p) is such that the quotient ¢(p)/p*~ remains bounded in the limit as p — 0. Finally, the
operator D is of an order of smallness higher than s, i.e.

|DA| = o([[2]%)-

(Completely continuous integral operators with sufficiently smooth integrands usually satisfy these
conditions: for examples see the references given above.) Let the eigenvalue unity be simple. Then,
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if 5 is even, the index v of the fixed point ¢ is always zero. If 5 is odd it turns out that |y| = 1, and
an easily applicable criterion deciding the sign of y can be given; but we shall not need this
result.

When ¢ is a non-zero fixed point, it is evidently to be expected that s = 2 (and so y =0)
almost always. That is, the approximation of the operator A in the neighbourhood of ¢ will
generally present C as a quadratic operator. We thus appreciate that the possibility of unity
being an eigenvalue of A’(¢) and in addition s > 2 is a great deal more extraordinary than the
possibility of the first property arising alone.t With considerably extended generality, therefore,
the exceptional case in question may be allowed on the assumption that, if it does arise,
the index of the respective fixed point is zero.

2.5. Variational methods

Let E be specifically the real Hilbert space Ly(D). The inner product of any two elements
u(y), v(y) € Ly(D) is defined as

(u, v) = f wv dy, (2.16)
D
and the norm in this space is given by
llulz, = <u, w)h. (2.17)

The functional (scalar) & (u), defined on some open set 7" < E, is said to have a linear Gateaux
differential if for all ue T and all e E the fomula

{gf(u +th) — F (u)

li
m 7

t—>0

} = (®u, k) (2.18)

defines the expression on the right-hand side as a linear functional of 4. The operator @ is called
the gradient of the functional %, and we write @ = grad # (Vainberg 1964, p. 54). The gradient
is said to be strong if & has a Fréchet differential: that is, if the scalar remainder

F(u+th) —F (u) —KPu, by is o(t|A]).

Operators definable in this way are called potential operators.
[We note that the gradient of a scalar function of position in the finite-dimensional space R,
is definable in just the same way. The inner product in R, is

0y = 3 w0, (2.19)
i=1

where #; and v; (i = 1,2, ...,n) are the orthogonal components of the vectors « and v; and again
the norm is the positive square-root of {u, v). Everything we shall say about variational principles
with respect to L, has a counterpart with respect to R,,.

We also note, incidentally, that a linear operator B acting in L, is called self-adjoint if

{Bu,v) = {u, Bv). (2.20)

When a linear operator has the form Bu = B( fu), where B satisfies (2.20) and fis a bounded
positive function, we shall describe B as self-adjoint with respect to the weight function f; for

1 This idea is clearly illustrated by the elementary example considered in § 1, where ¢ is a scalar variable satis-
fying ¢ = A(¢). The first exceptional property is that A'(¢) = 1, and the additional property is that A”(¢) = 0.
Figure 1 (¢) exemplifies the less extraordinary case of a fixed point with zero index [i.e. 4°(¢) = 1 but 4”(¢) = 0].
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evidently the preceding definition of self-adjointness applies again with the modified inner
product

(u, vy, = fouv dy. (2.21)

It is easily seen that the self-adjoint linear operator B is the gradient of the functional 3{u, Bu).
The self-adjointness of a linear matrix transformation in R, may be similarly defined, by
Jjuxtaposing (2.20) with the definition (2.19) of the inner product in R,.]

In § 3.5 the hydrodynamical problem will be considered recast so that a function { representing
a conjugate flow is a solution of

{=G¢, (2.22)
where G is a completely continuous potential operator, being the gradient of a functional .
The identity operator I is the (strong) gradient of }(u, 4y (Vainberg 1964, p. 55). Hence the
completely continuous vector field I — G may be considered as the gradient field of the functional
A(w) = u,uy — 2(u), (2.23)

and a solution {e L, of (2.22) amounts to a stationary point of 4, i.e. grad A({) = 6.

Let o < L, be a bounded set which is weakly closed: this means that o contains all its weak limit
points.t With regard to the abstract nonlinear functional /A, suppose it can be shown (a) that
A is strongly differentiable on o (i.e. G is defined on o), (5) that A has a lower bound on ¢ which
is achieved at a point {e o, and (¢) that { is not on the boundary of o. The fact (5) means that
A(¢&) is a minimum. But, in consequence of (¢) and (¢), a necessary condition for a minimum at
¢ is that this point be stationary (see Vainberg 1964, p. 77, theorem 9.1: it is helpful to recall the
familiar counterpart of this proposition in the analysis of differentiable scalar functions of
a finite-dimensional vector). Thus (a), (¢) and (¢) together imply that (2.22) has a solution to
which a minimum value of 4 corresponds. If, however, (2.22) has the trivial solution ¢ = ¢ and
0€ o, then obviously a useful existence proof must establish another fact, namely (d) that A has
values less than 4(6) on o.

In this approach the assumption that the nonlinear operator is completely continuous is again
crucial, being required to establish (4). In a Hilbert space any weakly closed, bounded set is
weakly compact (Vainberg 1964, p. 11 and p. 23, theorem 1.7). Hence one can show that if
the functional A is weakly lower semi-continuous} on o, then it has a lower bound which it achieves
on o (Vainberg, p. 68, theorem 9.2). The functional {«, «) has this property, and so A has it also
if the functional @2 is weakly continuous§ on o, which property is provided if G is a completely
continuous operator (Vainberg, p. 76, theorem 8.2).

In the main development of the conjugate-flow theory, variational methods will not be used
primarily to establish the existence of solutions. The need to order the physical possibilities®
which is met by specifying solutions in a cone, seems to mark out the use of topological methods
as the most natural general approach to the existence problem.| In §6.5, however, the varia-

t Ifasubset of a Banach space is convex, then its weak closure coincides with its strong closure (Kelley, Namioka
et al. 1963, p. 154, theorem 17.1). For example, in any Banach space the sphere [[u|| < r is weakly closed.

1 This means that if {u,,} (m = 1,2, ...) is any sequence of points in o such that u,, v weakly as m—+ oo, then
liminfA(u,,) = A(v).

m—>0
§ This means, with reference to the preceding footnote, that lim Q2(x,,) = Q(v).
M0

|| There are, of course, many connexions between the two approaches, some of which will be touched upon in
§ 3.5. Reference may be made to papers by Rothe (1951, 1952) for studies of the Leray—-Schauder indices of fixed
points and other topological properties of completely continuous vector fields that are the gradients of functionals in
Hilbert space.
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A UNIFIED THEORY OF CONJUGATE FLOWS 603

tional argument just outlined will be applied to an example, for which a special device will be
used to restrict solutions to a cone of non-negative functions.

The main application of variational ideas in the present context is to the theory of flow-force
differences between conjugate flows (§3.5). In specific examples the matter can sometimes be
treated by other methods (see, for example, Fraenkel 1967), but the use of variational ideas
seems essential to the interpretation of certain general principles concerning flow force.

3. ABSTRACT THEORY OF CONJUGATE FLOWS

Recapitulating (1.2), we take the equation that governs steady x-independent flows to be

¢ = A(p) . (3.1)

Here A(x) stands for a nonlinear operator such that A(x)6 = 0 and depending on the positive
parameter u, which varies inversely with the scale of the flow velocity in the x-direction. We have
in view typically that if this velocity is a constant ¢, or if a scale factor ¢ is attached to a non-
uniform velocity distribution, then 4 = a/c%, where a is a positive constant. Thus a scaling down
of the flow velocity, such as to produce a critical state from a supercritical one, corresponds to
an increase in #. We assume that, in a sense to be made prefise preseIAltly, the operator A(u) is
increasing with u: as a prototype we can consider A(u) = uA, where A is an operator indepen-
dent of the velocity scale. The opposite case, whose prototype is A(x) = 1A, may be presented
by the most convenient formulation of the hydrodynamical problemt (e.g. examples 1 and 2,
§§ 4 and 5); but the modifications then needed in the following statements are obvious, and so
the present assumption is warranted for the sake of concision. The dependence of operators on
the parameter x will often be left implicit when not bearing directly on the discussion: for
instance, the right-hand side of (3.1) may be written as A¢.

It is worth further emphasis that the following arguments cover many different specific forms
of the hydrodynamical problem. The solution ¢ of (3.1) may be a vector in a finite-dimensional
or infinite-dimensional space, and various propositions are to be established without the need to
distinguish between the spaces in which the problem may be posed. We assume that the operator
A acts in some Banach space £ and is completely continuous (or just continuous in the case of
finite-dimensional spaces). This assumption is essential to the global existence theorems that will
be brought to bear on the problem, but the arguments presented next in § 3.1, concerning the
definition of supercritical and subcritical states of flow, do not depend on it.

3.1, The supercritical-subcritical classification

Generally (3.1) has many solutions corresponding to different, possibly overlapping ranges of
the parameter #. An ordering of the possibilities thus represented is needed to make sense of the
physical problem, and a natural approach would be to characterize them in the same way as the
solutions of the linearized form of (3.1), by taking account, for example, of the number of zeros
of ¢ on the open domain over which it is defined (cf. Benjamin 1966). In keeping with this idea
we consider here the possibility of solutions in a cone K. In applications this is usually (but is not
necessarily) a cone of non-negative functions, in which case typically the ‘first wave mode’ is

t Particularly when ¢ is a finite-dimensional vector, it may be just a question of convenience whether (3.1) or

its inverse ¢ = A~1¢ is considered. If A(u) is decreasing with p, then generally the inverse operator A-1(u) will be
increasing.

51 Vol. 26g9. A.
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604 T. B. BENJAMIN

specified and the respective values of 4 are smaller—and so velocities are larger—than for other
modes (cf. K (¢), §2.4).1

We assume that A is a positive operator which has a strong Fréchet derivative with respect to
the cone K, and that

A'(pspa)u > A'(Gspg)u if Puek, py > py > 0. (3.2)

We also assume for the time being that, for ¢ K, A’(¢; u) has two of the properties noted in the
last paragraph of § 2.1, being common to a wide class of linear operators: namely, (ii) an eigen-
value A; > 0 to which a positive eigenvector corresponds is simple, and (iii) such an eigenvalue
is unique.

We next suppose that for a certain value of the velocity scale, such that g = uc say, equation
(3.1) has an infinitesimal solution in K. This means that the derivative operator at the zero point
of E, A’(0; uc), has a positive eigenvector corresponding to the eigenvalue unity, thus

£ = A'(0; pe) &, where £cekK. (3.3)

The primary flow corresponding to # = . is classified as ¢ritical, in accordance with the definition
that an infinitesimal wave of extreme length can be superposed on it (see § 1).

We further suppose that for g = pc, the operator A’(6;u) has a positive eigenvector corre-
sponding to an eigenvalue A, > 0, thus

A = A'(O;p) &, where £ekK. (3.4)

Hence in various ways it may appear that
Ap <1 implies g < pre, so the primary flow is supercritical, (3.54)
Ay > 1 implies p > pe, so the primary flow is suberitical, (3.50)

For instance, let us assume that a maximal positive number £,, can be defined such that]

£> Brnbe, but §—pE¢K if f>f,
If the implication stated in (3.54) is assumed not to be true, so that there exists # > ue when
A < 1, it follows by virtue of the condition (3.2) that

A'(O; ) € > A'(0; pe) €. (3.6)

t For the study of ‘higher modes’, another class of cones defined as follows would be useful. Suppose that the
linearized form A’(0; ) of the operator A(u) has a set of normalized eigenvectors &, (||£,]| = 1) corresponding to
simple eigenvalues Ay (n= 1,2, ...). Valuesof #, say t,, for which A’ = 1 may be bifurcation points for the nonlinear
equation (3.1), so that when g is close to a particular 4, it may be expected that the equation has a solution not
much different from b4, £,, where b, is a small constant. To make an exact study of this situation, it is suitable to
consider thelinear operator P, that projects any element € E onto the one-dimensional subspace defined by £, (i.e.
the straight line passing through the zero point 6 and the point £,). Thus we consider P, u = b,(u) £,, where b,,(«)
is a linear functional, and we represent u as the sum « = P,u- P"u, where P™y is an element of the complementary
subspace of E having unit defect. A cone in E is comprised by the collection of elements for which

bu(u) = 0, |IP"u|| < K[|Pyull = Kby (u),

where « is a positive number (K(¢), p. 35; Vainberg 1964, p. 91). This cone is easily seen to be normal.

It may turn out that the set of eigenvectors {£,} is a complete orthogonal basis in L, (see for example, §6.3).
Then b, (u) is just the coefficient of &, in the orthogonal-series expansion of u: that is, b, (1) = (§,, u). It is readily
seen, moreover, that the second of the above inequalities defining a cone is equivalent to

@ 3
(1o, > ( £ 8)'= ol
m==1
+ The validity of this assumption is obvious if K is a solid cone and £ is an interior element, but it can also be
justified under considerably less restrictive conditions. If A’(0; u) and A’(0; p,) are both uy-bounded (see concluding
paragraph of § 2.1), it is a simple matter to show that there exists a £, > 0 defined as above.
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A UNIFIED THEORY OF CONJUGATE FLOWS 605

The positiveness of the operator A on the cone K implies that A’(6; s¢) is also a positive operator
(K (¢), p. 103), and hence

A0 pe) € 2 B A'(0; p1c) e = B Ee- (3.7)
But the combination of (3.4), (3.6) and (3.7) shows that

€2 (BnlAg) es

which contradicts the maximal property of £, if A, < 1. Thus the truth of (3.5 4) is established.
An obvious adaptation of this argument may be used to prove (3.5 b), and similarly the converse
of (3.54) and (3.5b) may be demonstrated (e.g. a supercritical primary flow implies A, < 1).
Another form of argument, applying when the linear operator A’(8; u) is self-adjoint with respect
to a positive weight function [see (2.21) and context], will be noted in § 6.4.

A conjugate flow represented by a non-trivial solution ¢ of (3.1) can be classified in the same
way. Suppose that the derivative operator A’(¢;u) at the point $eK has a unique positive
eigenvector corresponding to an eigenvalue A4 > 0, thus

Agn = A'(¢;)n, where 7€ K. (3.8)

If A’(¢; p) is a positive operator (which property is ensured if the operator A is monotonic on K),
then the preceding form of argument can be used to show that the conjugate flow is supercritical
or subcritical accordingly as A5 < 1 or A4 > 1. Otherwise, as will be shown in § 6.4, this classifica-
tion may be established by using the self-adjointness of A’(¢; 1) with respect to a positive weight
function, if it has this property.

As regards the classification of flows and also questions of existence, it is generally sufficient to
assume that at points ¢ in the cone the nonlinear operator A is strongly differentiable in the
directions of the cone. Later, however, in order to clarify certain deductions bearing on the
transcritical property of conjugate flows, a stronger assumption is needed about the differenti-
ability of A. We shall suppose that at a solution point ¢ € K(¢ + 0), A’(¢p) has a strong Fréchet
derivative in every direction of the space E, and we shall take account of eigenvectors of A’(¢)
that are not elements of K. It will then be convenient to depend on the fourth property of certain
linear operators noted in the concluding paragraph of § 2.1, namely that the (simple) eigenvalue
A4 to which a positive eigenvector corresponds is greater than any other eigenvalue.

The simplest view of the theory as a whole is given by taking A’(¢) to be a uy-bounded operator
and K to be a reproducing cone, in which case the properties (i) to (iv) noted at the end of § 2.1
are automatically provided (see K (¢), ch. 2): this still allows a very wide range of applicability.
Extensions of the present arguments to physically meaningful examples in which the properties
(i) to (iv) do not all hold appear feasible (e.g. concerning ‘higher modes’), but discussion of
them here would further complicate the presentation to an unwarranted extent. In passing,
however, we may suitably note two propositions that establish convenient properties under
alternative assumptions. If a linear operator B is u;-bounded and K is a reproducing cone, it
follows simply that a positive integer » and a positive number y can be found such that
B™u < vyu, for any particular « € E. If B is completely continuous, the latter condition implies
that there exists a simple eigenvalue to which a positive eigenvector corresponds, and which
is greater in magnitude than any other eigenvalue of B (K (), p. 263, theorem 2.3). But the
original requirement that K is reproducing is not necessary to the latter condition, which might
therefore be taken, together with the u,-boundedness of B, as a somewhat more widely applicable
specification. If B is not uy-bounded from below, the following proposition may be useful. Let

51-2
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606 T. B. BENJAMIN

K be a reproducing cone, and let 4, be a positive eigenvector of the linear operator B which is
hy-bounded from above (i.e. a £ > 0 and an z can be found such that B*u < Bk, for u € K). Then
none of the remaining eigenvalues of B is greater in magnitude than the eigenvalue to which
g corresponds (K (¢), theorem 2.14).

3.2. Some necessary conditions

Incidentally to the main development of the theory, we note here some simple considerations
showing that a non-zero positive solution of (3.1) is impossible in certain cases. The nonlinear
positive operator A (whose dependence on the parameter y is left implicit henceforth) will be
called concave if

Atuy + (1 —t)uy} > tAu, + (1 —1) Auy,  for ujuse K (ug +u,), 0 <t <1, (3.9)
and convex if

Altuy + (1 —t)uy} < tAuy+ (1—1t) Auy, for wujus € K (ug #+ uy), 0 <t < 1. (3.10)
These terms will be taken to imply, moreover, that neither > in (3.9) not < in (3.10) reduces to
equality except at{ = O and ¢ = 1.

Let the cone be specifically the cone K of non-negative functions in L,. Also let the linear
operator A’ () be self-adjoint with respect to a positive weight function f[see (2.21) and context],
which is a property often arising in applications (cf. § 6). Our aim is to show that in the case of
a concave (respectively convex) operator A, it is then necessary for the primary flow to be
subcritical (respectively supercritical) if a conjugate flow is to exist represented by a non-zero
solution of (3.1) in K. By the use of arguments akin to those in § 3.1, corresponding propositions
can in fact be established under rather weak assumptions when the cone is arbitrary and A’(9)
is not necessarily self-adjoint; but we shall pass over these generalizations.

We first assume that A is concave, and that ¢ € K, (¢ * 0) exists such that ¢ = A¢. Putting
u; = ¢ and u, = 0 in (3.9), we obtain

A(tp) 2 tp for 0<t< 1.
Itis further implied by the definition of concavity [see remark following (3.10)] that A(t}) — t¢ is
a non-zero element of K for 0 < ¢ < 1. Thus, taking any particular value #, such that 0 < ¢, < 1,
we have
A(typ) = typ+t,x  with ye K, (x +0). (3.11)
With 4, = t,¢ and u, = 6, (3.9) now gives

SAWLS) > Ald) (0<V <),

Taking the limit as ¢ — 0 and combining the result with (3.11), we obtain

A'(0)¢ > ¢ +x. (3.12)
Since the weight function fis positive, the inner product (2.21) of any two non-zero elements of
K, must be positive unless their supports on D are disjoint. Considering the eigenvector £ € K. of

A’(0) that corresponds to the eigenvalue A, [see (3.4)], we assume that this function is positive
almost everywhere. Hence, using the self-adjointness of A’(6), we have

0 <<x, &) < {A'(0) — ¢}, )y =<, A'(0) £);—($, £)s
= (A= 1){¢, &) (3.13)

which shows that A, > 1. Thus the primary flow must be subcritical.
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An obvious adaptation of this argument leads to the conclusion that the primary flow must be
supercritical (A, < 1) if A is a convex operator and (3.1) has a non-zero solution in K.t Itcan
similarly be seen that if A is concave (respectively convex), then a solution in the cone — K, of
non-positive functions is impossible unless the primary flow is supercritical (respectively
subcritical).

The same set of conclusions evidently holds when the solution ¢ of the hydrodynamical
problem is a non-zero element of the finite-dimensional space R, and the matrix transformation
A’(0) is self-adjoint with respect to a positive weight. These conclusions also hold with regard to
problems posed in the space C, for then the definition (2.21) is still meaningful as a linear func-
tional of « if v is also an element of C.

3.3. Existence of conjugate flows: example of the transcritical property

In specific examples the existence of a non-trivial solution ¢ € K of (3.1) may be established
by one or other of the four fixed-point theorems stated in § 2.2. Either of the theorems I or III
may be applicable when the primary flow is subcritical, and IT or IV when it is supercritical.
Consideration of the one-dimensional case (i.e. where ¢ is just a scalar, as was discussed in §1)
shows that these four theorems and combinations of them comprise the most general set of
propositions assuring the existence of a non-zero fixed point of a positive completely continuous
operator A such that A0 = 6. Accordingly, a study of the transcritical property of conjugate
flows can suitably be made by taking the conditions of these theorems as prescribed data.
A comprehensive view of the possibilities will be developed in § 3.4, where the concept of the
Leray—Schauder index will be used; but there are various special aspects of the problems that
can be illuminated by arguments associated with the present fixed-point theorems. The following
argument is helpful in that an outstanding aspect of the simple case considered in § 1 is generalized
to spaces with an arbitrary number of dimensions.

We assume that the primary flow is subcritical so that A, > 1, and that A’(6) does not have
a positive eigenvector corresponding to an eigenvalue of unity. (The latter condition is, of course,
ensured if we suppose A’(0) to have the property (iii) noted at the end of § 2.1). Also A is a mono-
tonic operator, and has a strong asymptotic derivative A’(co) with respect to the cone K. If no
eigenvalue of the linear operator A’(co) is equal to or greater than unity, then all the conditions
of theorem III are provided and it can be concluded that A has at least one non-zero fixed point
¢ in K.

The solution ¢ is not necessarily unique, and on the assumption that it is not we discriminate
the solution—or solutions— satisfying

p—p*¢K, (3.14)

where ¢* stands collectively for every other non-trivial solution of (3.1) in K. A solution that is
distinctly closest to the point 6, in the sense that |@| < ||¢*|, obviously satisfies this condition
if the norm is monotonic on K (see remarks following the definition of a normal cone in §2.1);
and there is always one among several solutions that satisfies it because, by the definition of
a cone, either ¢, — ¢, or ¢, — ¢, must fall outside K if two points ¢, and ¢, are different. We shall
now show that the respective conjugate flow cannot be subcritical: that is, if the possibility of the
flow being exactly critical is excluded, then it must be supercritical. In view of what was explained

1 A conclusion equivalent to this was established by Sheer (1968), who considered a specific problem of the
general kind now in question but used a totally different approach.
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in the context of (3.8), this amounts to showing that A; < 1 if A4 # 1. (The general need to
qualify such propositions by excluding the extraordinary possibility Ay = 1 was pointed out in
§ 1.) In the following proof the assumption that A4 > 1 is shown to lead to a contradiction.

We take the positive solutions of the linear equations (3.4) and (3.8) to be normalized,
1€l = ||| = 1, and we assume K to be a solid cone in which ¢, £ and 7 are interior elements. [The
latter assumption is made for simplicity, since it gives immediate justification for the inequalities
(3.15) to (3.17) which follow, but the present argument can be adapted to the case of cones without
interiors: cf. the second footnote to §3.1.] We consider the conical segment & consisting of the
collection of elements « that satisfy

ek <u<¢—0oy, (3.15)
where ¢ and § are small positive numbers. The set &is evidently convex, and it may be assumed
not to be empty if ¢ and ¢ are sufficiently small. On the additional assumption that the cone K is
normal, S can be considered as a closed set (cf. K (¢), §§ 1.2, 1.3). Since A, > 1, we have

Aeg) = eA’(0)E+o(e)
= Age§+o(e) > € (3.16)

if € is small enough. Also, on the assumption that A4 > 1,

A(p—dn) = Ag—0A'(¢) n+0(9)
= ¢—A40n+0(8) < p—0y (3.17)
if ¢ is small enough. The inequalities (3.16) and (3.17) imply that the monotonic operator A
transforms Zinto itself. And, since A is taken to be completely continuous, it follows by virtue of
Schauder’s principle that A has a fixed pointin & (K (¢), § 4. 1. 1). But this is contradictory either
if ¢ isunique or if ¢ is selected by the condition (3.14), and thus the assumption that A, > 1is seen
to be incorrect. We have shown that corresponding to the given subcritical primary flow, at least

one conjugate flow is supercritical.
3.4. Index theory

The transcritical property of conjugate flows can be examined in a very general way by
considering the Leray—Schauder indices of fixed points ¢ € K, and using the topological theorems
explained in § 2.3 concerning the rotation of a completely continuous vector field. With this aim
it is simplest (later on) to assume that K is a solid cone and the non-zero solutions ¢ are interior
elements, but we shall finally show that out main conclusions can be generalized to include
cases where the cone K has no interior.

We may define a completely continuous operator A which maps the whole of the space E
into K and is identical with the completely continuous positive operator A on K, that is

AueK if uek, (3.18)
and Au=Au if uek. (3.19)

Such an extension of the operator A always exists, by virtue of the cone being by definition a
closed and convex subset of E: proof of this fact is available from the theory of retracts (e.g. see
Hu 1965, p. 57, theorem 14.1). For example, let K be a cone of non-negative functions in one
of the spaces Cor L,, or let it be a narrower cone into which this cone is mapped by the operator A
(see § 6.4). Then an operator with the required properties is A = AC, where C is the continuous
operator taking any function « € E into the function

Cu = %(U—F |u|),
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which is the same as # where « has non-negative values and is zero elsewhere (cf. K (), p. 248).
Obviously, any fixed point of A must belong to K and is therefore also a fixed point of A.

The subsequent interpretation of the transcritical property rests on the following propositions
which complement the fixed-point theorems of § 2.2. Here S, and S5 stand for spheres ||u| =7 > 0
and |u| = R > r in E, and it is implied that r < ||¢| < R, where ¢ € K is the solution of (3.1)
whose existence is guaranteed by one or other of the fixed-point theorems.

TuEOREM A. Let the conditions of theorem I be satisfied, or let the conditions of theorem I1I be satisfied
and in addition let the cone K be normal.t Then there exist spheres S, and Sy, on which the rotations of the
completely continuous vector field I — A are respectively

Y(Sy) =0, (3.20)
and v(Sg) = 1. (3.21)
TuEoREM B. Let the conditions of theorem II be satisfied, or let the conditions of theorem IV be satisfied

and in addition let the cone K be normal.t Then there exist spheres S, and Sy on which the rotations of the
completely continuous vector field I — A are respectively

y(S,) =1, ‘ (3.22)
and v(Sg) = 0. (3.23)

Proofs of these two theorems are given in appendix 1. We note that they are themselves in
effect existence theorems. For, according to either 4 or B, the rotation of the field I — A is different
from zero on the boundary S, + Sy of the bounded domain 7, » which consists of the set of points «
‘satisfying r < ||u| < R. By virtue of the general Leray—Schauder principle (see §2.3) it follows
that at least one fixed point of A exists in T,, r, and, for the reason noted earlier, this must
also be a fixed point of A.

Allowing that there may be several fixed points in Kn 7, p, let us label them ¢;
(j =1,2,...,k) and denote their indices respectively by ;. As was noted in § 2.3, the number &
is necessarily finite if the fixed points are isolated. If K is a solid cone and the non-zero fixed
points are interior elements, so that Au = Au on a sufficiently small sphere surrounding each ¢;,
then clearly the index of ¢; considered as a solution of ¢ = A¢ is the same as the index of this
fixed point considered as a solution of ¢ = A¢. This equivalence is not immediately obvious if
the cone has no interior and we leave this case until later, proceeding for now on the assumption
of the simpler case.

Implications of theorem A and theorem B

To establish the practical bearing of these theorems, appeal is made to the properties of the
derivative operator A’(¢;) that were presupposed in the discussion at the end of § 3.1, where in
turn reference was made to the concluding paragraph of § 2.1. Let A; denote for short the eigen-
value (previously written A, with regard to a general fixed point) to which a positive eigenvector
of A’(¢;) corresponds. We take each A; to be simple, unique and greater in magnitude than the
remaining eigenvalues of A’(¢;), which will be denoted by A{™ (m = 2,3, ...). The following
facts are then apparent in the light of the formula (2.15) and its context:

(a) If 2; < 1 (i.e. the fixed point ¢; represents a supercritical conjugate flow), then y; = 1.

1 This additional condition is a natural one as regards the hydrodynamical problem. The normality of the cone

would generally have to be used in establishing the first condition of theorem I or theorem II on the assumption
that the primary flow is, respectively, subcritical or supercritical.
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(6) If unity is not an eigenvalue of A’(¢;), then ¢; is an isolated fixed point whose index
satisfies |y;| = 1.

(¢) Subject to the condition in (), y; = — 1 implies that A; > 1, so that the conjugate flow
represented by ¢; is subcritical. ‘

(d) The converse of () is not necessarily true. If y; = 1 it is possible, of course, that A; < 1;
but another possibility is that there is an even number of eigenvalues of A’(¢;) in excess of unity.
Thus, for instance, A; > A% > 1 > A (m = 3,4,...). Suppose, however, that eigenvalues other
than A; cannot exceed unity, a fact that might be established by a study of the operator A in
specific examples. Then y; = 1 implies that A; < 1, so that the conjugate flow represented by
¢, is supercritical.

For the reasons pointed out in § 1, the exceptional case in which unity is an eigen value o
A’(¢;) might justifiably be excluded by assumption. The index of a fixed point may still be
definable in this case, however, and the range of the present interpretation can be considerably
extended by means of the proposition explained at the end of § 2.4. We assume this proposition
applies, and in particular the operator A has the very usual property noted in the final paragraph
of'§ 2.4 (i.e. so that s = 2). Thus we have y; = 0 in the exceptional case. A fixed point ¢; will be
called exceptional or unexceptional accordingly as y; = 0 or, by (b) above, |y;| = 1.

The implications of theorem A and theorem B can now be explained, provisionally at least
on the basis of the assumption that the cone K is solid and the non-zero fixed points ¢; are interior
elements. Applying the topological principle expressed by (2.14) and then its particular form
expressed by (2.13), we conclude that if the primary flow is subcritical and accordingly
theorem A applies, then

YitVet oty =1 (3.24)

by virtue of (3.20) and (3.21). Again, if the primary flow is supercritical and accordingly
theorem B applies, then
71+72+-..+7k=—1 (3.25)

by virtue of (3.22) and (3.23). In either case it follows that the number of unexceptional fixed points
is odd, say 1+ 2N (N > 0). And if, as proposed in (d) above, we assume that for each fixed point
the eigenvalues of A’(¢;) other than A; cannot exceed unity, then an especially simple interpreta-
tion of the transcritical property follows immediately. That is, in the case of a subcritical primary
flow 1 + Nof these fixed pointsrepresent supercritical conjugate flows, while N represent subcritical
conjugate flows; and the corresponding statement with the words subcritical and supercritical
interchanged is also true. Thus we have a complete counterpart to the set of conclusions that was
pointed out in § 1 with regard to the rudimentary example in which (3.1) is a scalar equation.

The general case of a supercritical primary flow

When the restriction on eigenvalues other than A; is not imposed, conclusions that are almost
as orderly can be made. Suppose first that the primary flow is supercritical and theorem B applies.
The result (3.25) shows that there are 14+ N > 1 unexceptional fixed points for which y; = —1, so
that, by (¢) above, at least 1+ N subcritical conjugate flows exist. The main conclusion thus
established deserves an emphatic statement as follows:

If the primary flow is supercritical (in the sense explained in § 2.1) and if conditions obtain (i.e. those of
theorem B) that guarantee at least one non-trivial solution of equation (3.1) in the cone K, then a
SUBCRITICAL conjugate flow exists.


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

A UNIFIED THEORY OF CONJUGATE FLOWS 611

The general case of a subcritical primary flow

Suppose now that the primary flow is subcritical and theorem A applies. The result (3.24)
shows that there are 1+ N > 1 unexceptional fixed points for which y; = 1; but in general, as
noted in (d) above, these do not necessarily represent supercritical flows. To make progress with
this case we rely in the first place on the assumption that the operator A is monotonic on K.

Let us begin by identifying an unexceptional fixed point, say ¢,, that satisfies

P*— ¢ K, (3.26)

where, as introduced in §3.3, ¢* stands for each in turn of the other non-zero fixed points.
It is easy to see that at least one among several fixed points always satisfies (3.26). We next define
a new space L, by transferring the zero point 0 to the point ¢, in the original space E, and we
consider the cone K, in £, consisting of the collection of elements from £ for which

w=u—¢,e K. (3.27)
Since ¢,, = A¢,, equation (3.1) can be written
w=A(¢,+w)—A¢, = A,w, say, (3.28)

and the fact that A is monotonic implies'that the new operator A, is positive on K. Also, of course,
we have A,0 = 0. If we now suppose that the conjugate flow represented by ¢, is subcritical, we
arrive at a contradiction. In fact, if A, > 1 the first condition of theorem III is provided with
regard to the positive operator A, and the application of theorem A leads easily to the con-
clusion that a non-zero fixed point of A, exists in K. But this contradicts the condition (3.26)
whereby ¢, is selected. Thus it appears that the conjugate flow in question must be supercritical
(A < 1).

This aspect of the transcritical property is complementary to the one established in § 3.3,
where too the assumption that A is monotonic was required. [Without this or some other addi-
tional assumption, the conditions of theorem A seem insufficient to guarantee a supercritical
conjugate flow, although the existence of such a flow is in fact the simplest outcome of variational
methods if they happen to be applicable (see §3.5).] If A is monotonic and if only a single
unexceptional fixed point ¢, exists, then from either the present or the former result it
appears that the conjugate flow represented by ¢, is supercritical. Combining the two results we
may also conclude that if three unexceptional fixed points exist, the nearest to and the farthest
from the zero point both represent supercritical flows, while the third represents a subcritical
flow and is intervening in the sense of not satisfying either (3.14) or (3.26) [see figure 2 () intro-
duced below]. Our main general conclusion in the present case is worth stating emphatically
as follows: '

If the primary flow is suberitical (in the sense explained in §2.1) and if conditions obtain (i.e. those of
theorem A) that guaraniee at least one non-zero positive solution of equation (3.1), in which the nonlinear
operator A is monotonic on K, then a SUBCRITICAL conjugate flow exists.

The preceding form of argument can be referred to any one of the unexceptional fixed points
¢, leading to expressions for the sum of the indices of fixed points that lie inside the cone K;
radiating from ¢;. If ¢; is subcritical theorem A and its corollary (3.24) apply, as considered
above; while theorem B and its corollary (3.25) apply if ¢; is supercritical. The conclusions are
listed as follows, where y,, stands for the indices of those unexceptional fixed points lying inside

52 Vol. 269. A.
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612 T. B. BENJAMIN

a particular K; (i.e. such that ¢,—¢; € K, p + j), £ is the number of eigenvalues of A’(¢;)
exceeding unity, and ¢ = ¥, |y,| is the number of fixed points ¢,,:

(i) v;=1, f=0,s0 ¢; is supercritical: then XYy, = 0 (g even);

(ii) y;=1, 8> 2 (B even), so ¢, is subcritical: then 3y, = 1 (g odd);

(iii) y; =—1,8 > 1 (B odd), so ¢; is subcritical: then ¥y, = 1 (¢ odd).
These propositions are illustrated in figure 2, which shows possible dispositions of unexceptional
fixed points of a monotonic positive transformation in R,, the cone being the first quadrant of
the plane. It may be seen that these diagrams are in accord with the foregoing conclusions, and
with the one established in § 3.3. For three fixed points the case (ii) listed above is impossible:
figure 2 (a) shows a possible arrangement of the two fixed points that must represent supercritical
flows, and the remaining one that must represent a subcritical flow and so cannot satisfy either
(3.14) or (3.26). Figures 2 (5) and (¢) show five fixed points, and case (ii) is illustrated by the
circled point in 2 (¢). Figure 2 (d) shows seven fixed points, including two instances of case (ii).

K bl

-1 -1

Y
Y

(@ (b)

(c) (d)
Ficure 2. Possible dispositions in the first quadrant of fixed points of a positive transformation. Theindex of each fixed
point isshown: y = — 1 implies a subcritical flow; y = 1 implies a supercritical flow except for circled points.

Propositions corresponding to (i) to (iii) can similarly be established for the case where the
primary flow is supercritical and theorem B is applicable. The sums ¥y, have the values
—1, 0 and 0, respectively, in the counterparts to (i), (ii) and (iii).

Uniqueness

If theorem A is applicable and it can be shown that y = 1 for any fixed point ¢ € K (¢ * 0),
then evidently the fixed point guaranteed by theorem A is unique. Again, a unique non-zero
fixed point is established by theorem B if it can be shown that y = — 1. To illustrate the use of this
topological proof of uniqueness, we consider the first case, in which the primary flow is subcritical
and theorem A applies, and we proceed on the basis of assumptions like those made in § 3.2.
That is, K is taken to be a cone of non-negative functions and the positive operator A to be
concave, thus satisfying (3.9). It is further assumed that the Fréchet derivative A’(¢) in the
directions of X is self-adjoint with respect to some positive weight function g [see (2.21)], and
has an eigenvector 3 € K.
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A UNIFIED THEORY OF CONJUGATE FLOWS 613

The result (3.11) is now recalled from §3.2. Thus, owing to the concavity of A, a positive
number ¢, < 1 can be chosen so that

A(tyd) > ty(p+x) with yeK (x=+0).
Using this result after putting ¥, = #,¢ and #, = ¢ in the definition (3.9) of concavity, we obtain
A{t'typ+ (1=t ¢} > 1Aty $) + (1 1) Ag
> tty(p+x) +Ad—1'g,

which leads upon rearrangement to

(1—t0)¢>A¢_A{¢;,t’(l_t")¢}+t0x for 0<# <1,

In the limit as #/ —> 0 this gives
¢ > A'($) § +0x, (3.29)

where b = #,/(1—1t,) > 0. Hence, introducing the eigenvector 7 of A’(¢) for which the eigenvalue
is Ay, assuming that this non-negative function is positive almost everywhere, and using the
self-adjointness of A’(¢) with respect to the positive weight function g, we have

0 < oy, myy = {P—A’(9) B} 1y = (B, 1y~ A" () 1)y
= (1=244) (&, 1)y (3.30)

which shows that Ay < 1. It follows from the fact (a) listed above that y = 1, and we therefore
conclude that the fixed point ensured by theorem A is unique.

If A is a convex operator the inequality Ay > 1 can similarly be established. To prove unique-
ness, however, it is necessary to show additionally that the remaining eigenvalues of A’(¢) are
less than unity [see fact (d) above]. This may be done by a study of the operator A in some
examples [cf. Benjamin 1971, § 5, where a uniqueness theorem is proved by a different method,
which nevertheless is inherently equivalent to the present approach]. We note that uniqueness
theorems for fixed points of concave operators acting in a general cone have been given by
Krasnosel’skii (K (b), p. 281 ef seq.; K (c),§6.1), although a different definition of concavity
was proposed by him. With regard to problems of uniqueness it is well known that nonlinear
equations involving convex operators pose special difficulties, not common to equations with
concave operators, and the pressent topological considerations give an interesting sidelight on
the matter.

Application to cones without interiors

It remains to show that the foregoing conclusions usually remain valid in cases where the
cone K is not solid. In the last part of the following discussion we shall particularly consider the
cone of non-negative functions in L,, but the argument will be seen to apply equally well to cones
of non-negative functions in other L, spaces and to non-solid cones in C (see § 6.4). As it appears
in (3.24) and (3.25), the index 7y of a particular non-zero fixed point ¢ € K is supposed to be the
rotation of the completely continuous vector field I — A on a small sphere surrounding the fixed
point. Butif K has no interior such a sphere can only intersect with and must lie partly outside K.
So, because A is not necessarily identical with A outside K, it is not obvious that the rotation of
the field I — A should be the same as the rotation of I — A. Our object is to show that vy as here
defined depends on the eigenvalues of A’(¢) in the same way as the index of a fixed point of I — A.

Supposing first that the eigenvalues of A’(¢) are all less than unity, we shall show that the

52-2
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614 T. B. BENJAMIN

completely continuous field consisting of vectors « — Au (u€ E) is homotopic to #— ¢ on a suffi-
ciently small sphere surrounding the fixed point ¢ € K. Thus, for the rotation on this sphere, we
have v = 1 (see § 2.4). The homotopy is established if the completely continuous vector fields

Flu,t) =u—tAu—(1-8)¢p (0<t<1)

can be shown to include no zero vector. Assuming to the contrary that there exists an element Uy
such that F(u,,t) = 0, we find at once that

uy = tAuy+ (1 —-t) pe K, (3.31)

since Auye K by the definition (3.18). Hence Au, = Au, by (3.19), and a rearrangement of
(3.31) after the substitution of ¢ = A¢ gives

h=t{A(p+h)—Ad}, (3.32)

where & = u, — ¢. By adaptation of a standard argument which was cited in § 2.4 (see, for example,
K (), pp. 136, 137), it can easily be shown that if |4|| is sufficiently small, the existence of a
solution of (3.32) implies that the linear equation

b= tA'(¢)h (3.33)

has a solution. Since A’(@) is specified to have no eigenvalue equal to or greater than unity,
whereas 1/t > 1, we have thus arrived at a contradiction and so the proposed fact y = 1is proved.
The other case that needs to be considered is where A’(¢) has a number £ of (simple) eigen-
value greater than unity and none equal to unity. The treatment of this more difficult case is
abbreviated in several respects, since in large part standard arguments are followed. Let F;
denote the f-dimensional subspace of E comprised from the set of eigenvectors of A’(¢$) corre-
sponding to eigenvalues greater than unity. Evidently £, is an invariant subspace for the linear
operator A’(¢). According to a well-known theory originated by F. Riesz, the space £ can be
represented as the direct sum of £; and a subspace £, which includes no eigenvector of A’(¢)
corresponding to an eigenvalue greater than unity. (In fact, £, is the closure of the direct sum of
all invariant subspaces for A’(¢) which do not intersect E,.) Putting as before u = ¢ + % with
h € E, we have to find the rotation 7y of the completely continuous field I— 4 on a sphere § s
i.e. |#| = p, where p is sufficiently small. Let §; = S,n £; and S, = §, n E, denote the intersec-
tions of S, with the complementary subspaces £; and E,. A topological fact which is crucial here
is that y = y,.7,, where 7y, is the rotation of the field on §; and v, is the rotation on S, (K (b),
p. 129, theorem 4.5: see particularly note on p. 132). On S, there is no eigenvector of A’(g)
corresponding to an eigenvalue greater than unity, and by assumption no eigenvalue equals
unity; hence the argument given in the preceding paragraph shows that if p is sufficiently
small, the field z — Au is homotopic to z—¢ on S, and therefore y, = 1. Thus we have y = 7y,.
The remainder of the argument rests on the often applicable proposition that the finite-
dimensional sphere S is contained completely in the cone K, provided p is small enough. To fix
ideas we take F specifically to be L,, and we assume that the individual eigenvectors of A’(¢)
are continuous functions—i.e. they can also be considered as elements of the space C. [Note that
this is a natural assumption with regard to linear integral operators in L, (cf. §6).] Let 7,
(m=1,2,...,8) denote the eigenvectors of A’(¢$) belonging to E;; and for simplicity (although
this is not essential) suppose that, as is usual, these eigenvectors are orthogonal with respect to
an inner product of the type (2.21) with a weight function g that is positive and bounded. Also
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A UNIFIED THEORY OF CONJUGATE FLOWS 615
let them be normalized with respect to this inner product: that is, {9, 7,0y = 0y, Then any
element of £, has the form

hy = ayny+ ...+ agi, (3.34)
and its L, norm, which equals p on ;, satisfies
(max g)¥ || hy||z, = [Chy, br)glE = (ad+ ... +ah)b. (3.35)

As already explained, we assume that there exist finite positive numbers C,, (m = 1,2, ..., )
given by
Cn = ”nm”O’ = max Iﬂml' (3.36)
From (3.34) to (3.36) it follows that on \$;
[24] ¢ = max |by| < Cylay| + ... +Cp|ay|
< (Cy+...+Cp) (max g)ip. (3.37)
Thus ||#,]| ¢ can be made arbitrarily small by taking p small enough.

Now suppose that ¢ has been established in the first place as a fixed point in the cone of non-
negative functions in Ly, but also is an interior element of the cone of non-negative functions in C.
It is then evident from (3.37) that provided p is sufficiently small, the finite-dimensional sphere
S, centred on ¢ is contained in the latter cone and therefore also in the former. In applications
of the present theory, however, cases are presented where the solution ¢ belongs to the cone of
non-negative functions in C but is not an interior element: this situation was explained in the
context of (2.1). The required conclusion may then be established by use of the norm given by
(2.1), which defines a Banach space of continuous functions vanishing at the boundary of their
domain of definition. The solution ¢ is an interior element of the solid cone of non-negative
functions in this new space; and if, as is usual in such cases, the eigenvectors #,, are also elements
of this space, then an argument corresponding to the above shows that again .S, is contained within
the cone of non-negative functions in L,.

With this fact ascertained, we know that Au = Az on S, and so the evaluation of y, can proceed
by the standard argument (K (&), pp. 133 to 137). If p is sufficiently small, the field consisting of
vectors ¢ +h; — A(p +h,) (B, € 5,) is homotopic to I — A’(¢), which in turn is homotopic to the
field —I on S,. The latter result is proved by considering the fields

(2t—1) b —tA'(§)hy (02K 1),

the vanishing of which anywhere on §; would imply the existence of an eigenvector of A’(¢)
corresponding to an eigenvalue less than or equal to unity, contrary to the definition of the
subspace £;. On a sphere surrounding the origin in a #-dimensional space, the rotation of the
field —1I (i.e. the field of interior normals) is equal to (—1)# (K (), p. 92; Aleksandrov 1960,
p. 112, proposition 5.14). Hence from the stated homotopy it follows that y, = (—1)#, and we
finally conclude that y = (—1)#, which is the anticipated result.

3.5. Flow force

We here examine some useful concepts that appear if the governing equation can be recast in,
or perhaps originally has, a form derivable from a variational principle. Our attention focuses
particularly on the reformulated equation { = G¢, whose solution { representing a conjugate
flow can be regarded as a null point of a gradient field in a Hilbert space £. Thus G is a potential
operator (see § 2.5), and we have

{~G¢ = grad A({) = 0, (3.38)


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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where the functional (scalar) 4 has the form
Alu) = $¢u, uy— Q(a), (3.39)

already noted as (2.23). In various examples of conjugate flows in frictionless systems, it turns
out that A({) is actually equal to (or atleast proportional to) the difference in flow force between
the flow represented by ¢ and the primary flow. (We recall that flow force is defined as the sum
of pressure force and momentum flux acting in the #-direction through a cross-section of the flow.)
More generally, if an expression for flow force is varied subject to conditions of mass and energy
conservation, it appears that conjugate flows have the property of making this expression
stationary. This principle is well known with regard to open-channel flows, and it was used by
Benjamin (1962) in treating the more difficult—and formally quite different—problem of
conjugate vortex flows. A detailed example of the principle will be worked out in § 6.5.

It is of considerable interest to ask why this remarkable property of frictionless conjugate
flows arises. That is, given that the equation determining steady x-independent flows has the
form (3.38), why is it that A({) usually represents relative flow force? This question evidently
turns on the basic hydrodynamics of frictionless flows, however, rather than on mathematical
aspects of the operator equation to which the physical problem is reduced, and so it will be
discussed separately in appendix 2. In the present approach we consider A qua the functional
in (3.38), establishing on this basis certain facts about its possible values. These facts become
especially significant in applications to frictionless flows where 4 can be identified with relative
flow force, but we appreciate that there may be other applications, concerning viscous fluids,
where A will mean something different. A particular aim is to illuminate the principle, already
known from several examples, that in a transcritical pair of conjugate frictionless flows the
supercritical flow has the smaller value of flow force.

The case of R,

We interrupt the main discussion to note the somewhat different situation usually presented
when the solution to a conjugate-flow problem is finite-dimensional (see examples in §§ 4 and 5).
Suppose that in the original formulation of the problem, giving equation (3.1), the solution ¢ is
an n-dimensional vector with components ¢, (: =1,2,...,n), to be considered as a column
matrix. As was previously indicated by (1.11), equation (3.1) then stands for » simultaneous
equations

b: = 4i(9), (3.40)
in which the nonlinear functions 4; are generally all different. The general question whether
this system of equations can be reduced to a variational principle is evidently tied in with Pfaff’s
problem concerning differential forms. For instance, the possibility of the matrix transformation
being itself the gradient of a scalar £, i.e.

4;(p) = 022(9)[o¢,

is equivalent to the differential form

3, 4;($) dg;

being an exact differential. If A happens to be a potential transformation, then the main points
of the following arguments apply immediately and the interpretation is simple. They would
also obviously apply if, as will be assumed below with regard to L,, a reduction of the problem
to the form (3.38) is possible by means of a linear transformation ¢ = L.
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A UNIFIED THEORY OF CONJUGATE FLO 617

In real examples, however, the more usual situation appears to be that a variational statement
of the problem is obtainable by introducing an ‘integrating factor’: this is, we recall, the simplest
device whereby a differential form might be converted into an exact differential. Thus one has
in this case

Q(9) {ps—As(9)} = o4 () [0, (3.41)

where the function @(¢) is, of course, common to every equation corresponding to: = 1,2,...,n.
We use the symbol A for the scalar in (3.41) to emphasize its analogy with 4 in (3.38), despite
the formal difference due to the presence of the factor Q(¢). It may easily be seen as follows that,
if Q(¢) is a positive function (which appears generally to be true in applications), the main
conclusions reached below regarding the values of A({) also apply to A(¢) in the present case.

The subsequent argument essentially concerns the sign of the second variation of A at a solution
point, considering particularly that the possibility of an invariable sign depends on the eigen-
values of the derivative operator at this point. In the finite-dimensional forms of the general
problem, the definition of abstract differentiation given in § 2.1 shows that the derivative operator
A’(¢) is an n-dimensional square matrix with elements 94,(¢)/d¢;, in which ¢ varies down the
columns and j varies across the rows. And, in the case when (3.41) holds, the second variation
of A at an arbitrary point ¢ [i.e. the second term of the expansion of A(¢ + ) — A(¢) in powers
of t] is given by

100(0) {12 - 25 het) 30 2L b - oy, (3.42
where repeated subscripts imply summation. The second group of terms in (3.42) vanishes at
a point satisfying (3.40), and thus the possibility of an invariable sign is the same as if the positive
function Q(¢) were a constant. In fact we see that the second variation of A at a solution point ¢
isnot positive definite if the matrix A’(¢) has an eigenvalue greater than unity. It will be appreci-
ated from the subsequent discussion that this conclusion completely establishes the analogy with
the problem posed in L.

We need to remember here that the operator A depends on the velocity parameter x. In
examples where the solution is a finite-dimensional vector the most convenient formulation of
the problem may be such that A(u) is decreasing with u, rather than increasing as was assumed
for the sake of clarity in this part of the paper [see context of (3.1) and footnote]. The effect of
velocity changes on the eigenvalues of A’(¢) is then reversed in direction; and so if the scalar A4
is presented as having the property (3.41), it is to be expected that —A(¢) rather than A(¢)
gives the flow force of the conjugate flow relative to the primary flow. A very simple example of
this is shown in § 4.

The case of Ly

We return to the problem expressed by (3.38), considering particularly that the space £ in
which the potential operator G acts is L,. It is assumed that G has a strong Fréchet derivative in
every direction of £. The reduction of (3.1) to the form (3.38) is not, of course, necessarily possible
if A is allowed to be a general nonlinear operator, but the case where it can be so reduced appears
typical of the theory of frictionless conjugate flows. Following Krasnosel’skii (K (), p. 349), we
first note that the reduction is simple if A happens to be representable in the form A = LM,
where the operators L and M are such that ML is potential and moreover Lu = @ only if u = 0.
For then the substitution of ¢ = L{in (3.1) leads to the equation { = ML{, which has the required
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form. The outstanding instance of this device is in the well-known variational method for treating
equations of the Hammerstein type (K (a), p. 363; K (4), p. 340; Vainberg 1964, ch. 7), and it is
this type of nonlinear integral equation that is chiefly met in applications of the present theory
(see appendix 2 for reasons). Referring for details to the example treatedin § 6 and to appendix 2,
we merely note here that, for the case in question, the operator in (3.1) takes the form A = BF,
where B is a self-adjoint linear integral operator having only positive eigenvalues and F is a non-
linear continuous operator of the sort exemplified in equation (1.4). The fact that B has no
negative eigenvalue implies that a self-adjoint operator B? exists such that B}(Biu) = Bu for
ue L,. Hence the substitution of ¢ = B¢ in (3.1) leads to { = BiF(B3{), in which B{FB? is
found to be a potential operator (i.e. L = B and M = B:F in the preceding notation).

As a basis for proceeding with the discussion of the abstract problem, we make an assumption
which includes the important case just described but which appears slightly more general. The
assumption is that the reduction of (3.1) to the form (3.38) is effected by some linear transformation

¢ = L¢, (8.43)
which is self-adjoint in L, and such that Lz = 6 only ifu = 6. Thus (3.1) gives
¢{=L1A(L) = G¢, (3.44)

in which G = L7*AL is supposed to be a potential operator. The inverse L1 will generally be
an unbounded operator, but the composite operator in (3.44) may well be completely continuous
in L, if A is completely continuous (e.g. this is true in the application to Hammerstein operators).
Since L—'L = I and L is self-adjoint, it is evident that L~ is defined and self-adjoint on the subset
L(E) of E, i.e. the subset into which the whole space E is mapped by L.

The crucial fact implied by the present assumption is that the eigenvalues of the derivative
operator G’({) at a solution point § for (3.38) [i.e. at a stationary point of the functional A] are
the same as the eigenvalues of A'(¢) at a solution point ¢ for (3.1). From (3.44) it follows that

G'(¢) = L'A'(LE) L = LA’ (¢) L,
and so the equation satisfied by an eigenvector @ of G’ ({) is
Aw = L1A'(¢) Lw.

Hence the substitution of 7 = Lw leads to

g = A'($)n,
showing that A is simultaneously an eigenvalue of G’({) and of A’(¢).

Now, A(&) is by definition a stationary value of the functional A (x), but it need not be a mini-
mum. In fact, a necessary condition for it to be a minimum is that the second variation of /1 at the
point ¢ should not be negative. On the assumption that the operator G = grad £ is strongly
differentiable, the second variation of 4, denoted by §24(¢), may be understood as }¢2 times the
second differential of A in an arbitrary direction ¢ € E; and so it appears that

02A(8) = 3%k, {h— G'(§) h). (3.45)

Thus we see that A({) cannot be a minimum if the operator G’({) has an eigenvalue greater
than unity. For, taking @, to denote the eigenvector corresponding to the highest eigenvalue
A, > 1, we obtain a negative value of §24({) on the substitution of £ = w, in (3.45). In the
exceptional case when A, = 1 the present argument is inconclusive; but a simple study based on
the very general assumptions explained at the end of § 2.4 shows that, virtually always, A({) is
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A UNIFIED THEORY OF CONJUGATE FLOWS 619

not a minimum in this case also. Hence the fact that A, is also an eigenvalue of A’(¢) leads us
at once to an important conclusion in the light of the ideas developed in §§ 3.1 and 3.4. Identifying
A(&) with flow force, we state the conclusion in physical terms as follows:

THE PRINCIPLE OF MINIMUM FLOW FORCE. A flow that realizes a minimum value of flow force is
necessarily supercritical.

The converse statement can also be justified under present assumptions. Since G'({) is taken
to be a strong Fréchet derivative, the remainder A({+ th) — A(L) —824(L) is o(¢2|2]?). And if
the highest eigenvalue of G'({) is less than unity (which is what we mean by the respective flow
being supercritical), it follows that 624(¢) > at?| 4|2, where o is a positive constant. Hence
A(E+th) — A(L) is positive in a sufficiently small neighbourhood of the point £. Thus in physical
terms the conclusion may be stated: 4 supercritical flow realizes a minimum value of flow force.

Flow force of a supercritical conjugate flow

The principle of minimum flow force becomes particularly relevant when variational methods
can be used to prove the existence of a conjugate flow corresponding to a subcritical primary
flow (see § 6.5). The essentials of the argument that may be used in this case were noted in § 2.5.
We recall that if the operator G is completely continuous, the functional A () is weakly lower
semi-continuous and therefore it will achieve its minimum value on any bounded, weakly closed
subset o of E. In the present application the suitable choice of o is the closed ball defined by
|« < R, where the constant R is sufficiently large. We then have 6 € o, but the specification
that the primary flow is subcritical precludes 4(f) = 0 from being a minimum. The remaining
step of the argument consists in showing that the minimum of 4 is not achieved on the spherical
boundary of o. Here appeal must be made to an assumption about the behaviour of the nonlinear
operator for elements with large norms, just as was required in the topological arguments
considered previously. If, for instance, it can be shown in this way that

Qu) < $R?* for |ju| =R, (3.46)

so that A («) has only positive values for |z| = R, then the proof is evidently complete. The con-
clusion is that a non-zero point {(||¢]| < R) exists to which a minimum value A({) < 0 corre-
sponds, and which is therefore a solution of (3.38). The general principle under discussion then
establishes that the conjugate flow represented by ¢ (and so having smaller flow force than the
primary flow) must be supercritical.

[In specific applications it is often the case that, corresponding to the solution ¢ which mini-
mizes 4, the solution ¢ = L{ of the original equation (3.1) is a non-negative function. This fact
may perhaps appear directly from a study of the operators A and G': for instance, 4({) is evidently
equivalent to 4(¢, G{) — 2({), which may appear not to realize its least possible value if L{ has
both positive and negative values (see the example of concave Hammerstein operators discussed
at the end of this subsection). In this case the behaviour of the operators for functions « such that
Lu has negative values is essentially irrelevant, and indeed it may impede the establishment of
a condition such as (3.46) needed to prove the existence of a solution. The preferable course then
is to modify the operators so that only their relevant behaviour is entailed (e.g. the behaviour
of A on a cone of non-negative functions): an example of this will be shown in §6.5. Since the
supercritical classification depends only on properties of the operators that will be preserved
in such a modification, the principle of minimum flow force will be unaffected.]

53 Vol. 269. A.
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Flow force of a subcritical conjugate flow

Examples in which the primary flow is supercritical obviously require different treatment,
because A () = 0 is then a minimum. Several approaches appear possible. One having helpful
precedents (cf. Nehari 1961) is to restrict the functions in competition for a minimum of A by
means of the normalization condition {u, Gu) + {u,uy = 1. This condition is automatically
satisfied by a non-zero solution of (3.38), so it is not a supplementary condition as in an isoperi-
metrical problem; but it is found to exclude a finite neighbourhood of the point . A more
revealing approach, however, is provided by the ideas outlined as follows.

Assuming that the weakly continuous and differentiable functional 2(x) has no stationary
point other than 0 [i.e. |Gu| > 0if |« > 0], and that 2 can have positive values on any sphere
|u| = p > 0, we consider the maximum of £ on each particular sphere. By virtue of the weak
continuity of 2 in the Hilbert space £, this maximum exists, being assumed at some point u, on
the sphere (cf. Vainberg 1964, theorem 13.3, part 2). And according to a well-known principle
the gradient of 2 must be collinear with the normal vector at the point of maximum, thus

GU* = Klly, (3.4:7)

where k (= 0) is a constant. We may describe u, as an eigenvector of the nonlinear operator G
corresponding to the eigenvalue . Since one such eigenvector exists on every sphere p > 0, the
collection of them forms a continuous branch B < E, and the differentiability of 2(x) and |u]?
further implies that the spectrum of eigenvalues « is continuous (cf. Vainberg 1964, theorem
18.11; K (4), p. 343, theorem 3.1). Therefore, to prove that equation (3.44) has a non-trivial
solution, it is sufficient to show that the spectrum spans the value unity.

The specification of a supercritical primary flow means that G’(0) has no eigenvalue greater
than or equal to unity, and from this it follows that ¥ < 1 if p is sufficiently small. As in the case
considered previously, the final property to be established must depend on some assumption
about the behaviour of the nonlinear operator for elements with large norms. Suppose that the
element u, realizing the maximum of 2() subject to ||u| = pisnecessarily such thatv, = Lu, €K,
where K is a cone of non-negative functions in £ (this is easily seen to be true in the case of convex
Hammerstein operators which is discussed below). Suppose also that the original operator A,
related to G as shown in (3.44), ‘expands’ the large-norm part of the cone, i.e.

v—Av¢K if vek, |v]| > R. (3.48)

By use of the fact that Q(uy) > £2(uy), where 4, is an arbitrary element with |4 = p, it may
generally be shown that [u,] - oo implies ||v,[ - co. Hence, in view of the result

Avy = Kvy, (3.49)
which is equivalent to (3.47), the condition (3.48) implies thatx > 1 if p is sufficiently large.

We can therefore conclude that an eigenvector { exists corresponding to k = 1, with |[§]| = p,
say, and this represents a conjugate flow. It is possible that x passes through the value unity more
than once along the branch B of eigenvectors, in which case we specify p, to be the smallest p for
which « = 1. Properties of the conjugate flow may now be inferred by considering the flow-force
functional A to be evaluated along B, so that the value taken on each sphere is evidently the
minimum for that sphere. The normal derivative of A at the point u, on the sphere ||u| = p is

given by ) = (ug, (us — Guy))

An(u* p = (l —K) p, (3'50)
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being therefore positive if p < p;. And the derivative of 4 in the outward direction along B must
have the sign as 4, because in all directions orthogonal to the normal the derivative vanishes.
Thus it appears that 4 increases along B up to the point {, and consequently A({) > 4(0) = 0.

Clearly A({) isnot a minimum, being in fact maximal among the set of values 4 (u,) taken on B,
and thus the solution ¢ of (3.44) cannot be supercritical. Hence, excluding the exceptional case in
which unity is an eigenvalue of G’({), we may infer that the solution is subcritical. It is a straight-
forward matter to show that one eigenvalue of G’({) exceeds unity, but this will be passed over.

Put in physical terms, the conclusion is that a conjugate flow exists which is subcritical and
has a greater value of flow force than the supercritical primary flow.

Concave and convex operators

Finally we note a simple variational argument which is applicable when the solution ¢ of
(3.1) lies in a cone K of non-negative functions and A is either a concave or convex Hammerstein
operator, in the category that can be reduced to potential form. In the present notation the
latter statement means that A = L?F and G = LFL, and we assume that both the linear (com-
pletely continuous) operator L* and the nonlinear continuous operator F (satisfying FO = 0)
are positive on K. This implies that F is concave or convex on K if A has the respective property.
[It is common in applications that the function Fu has the form u(y) f{y, u(y)}, where f(y,u) is
a positive function: then F is concave or convex accordingly as f(y, ) is a monotonic decreasing
or monotonic increasing function of «.]

From the definition G = grad 2 it follows in this case that

dQ(#f)[dt = (G (), &)
= (F(tLE), LE) = <F(ip), )-

Hence, using the fact that 2(0) = 0, we obtain

2(0) = [ (Pug), oyt (3.51)
0
Also, since ¢ is a solution of (3.38), the definition (3.39) of A(x) shows that
A(8) = KGE E—Q(8) = KFp, ¢) —2(8). (3.52)
A combination of these two results gives
A(Q) = [ Fp-Fug)) prat. (3.53)

It is assumed that ¢ is a non-zero element of a cone K of non-negative functions. And if F is
a concave operator according to the definition given in § 3.2, we have that F(¢¢) —¢tF¢ is a non-
zero element of K for 0 < ¢ < 1. Hence (3.53) shows immediately that

A(g) < 0 if Fis concave. (3.54)
It similarly appears that
A(g) > 0 if Fis convex. (3.55)

Inasmuch as they must exemplify the principle of minimum flow force, these conclusions are
entirely consistent with the results obtained in §§ 3.2 and 3.4 concerning non-negative solutions
of (3.1) when the operator is concave or convex. In the first case it was shown in § 3.2 that the
primary flow must be subcritical, and (3.54) shows that the supercritical conjugate flow—which
53-2
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622 T. B. BENJAMIN

is unique if the arguments given in § 3.4 apply—has a smaller value of flow force. In the second
case the primary flow must be supercritical, and so according to (3.55) the general principle is
again borne out.

4. ExaMPLE 1. OPEN-CHANNEL FLOW

We consider the flow of a heavy ideal fluid along a straight horizontal channel (see figure 3).
The flow velocity is assumed to be uniform, so that the free surface is horizontal, and the greatest
depth /% of the stream is taken as the dependent variable. The cross-sectional area 2 of the stream
is a monotonic increasing function of this variable, thus

b
=) = [ s dy,
and we shall use the fact that
d2/dh = b(h), (4.1)

where b(#) is the breadth of the channel at the free surface.

\]4-——b(h)——>|/ —___—__/' T

+ -—c h
> h <1 l
S T

Ficure 3. Illustration of open-channel flow.

Let %, denote the depth of the primary flow and ¢ its (positive) velocity. The depth % and
velocity u of any conjugate flow are related to £, and ¢ by the condition of mass conservation

uZ(h) = ¢2(hy), (4.2)
and the condition of energy conservation
gh+3u? = ghy+ 42 (4.3)
Hence, eliminating « and putting £ = &, + ¢, we obtain
! 22(ho) } A(g)
= l1- — , 4.4
6=l S heta = 4

where 1 = g/c2. (Note the inverse dependence on u: see the first paragraph of §3.1.)
From (4.4) and (4.1) there follows

A7(0) = b(ho) [Z(hy) = ey say. (4.5)

So, by our general criterion, the primary flow is supercritical or subcritical accordingly as
I < fre OF 4 > pie. It is easily seen that the function

C(h) = {gZ (1) [b(R)}* (4.6)

expresses the velocity of infinitesimal long waves relative to the fluid when the undisturbed depth
is . Thus the condition of supercritical flowis¢ > C(A,), in accord with the customary definition

Let us suppose that X increases continuously with 4 and nowhere more rapidly than an
exponential, so that 22" < (X”)2if X' is twice differentiable. This implies that A(z) has a concave
nonlinearity, i.e. A(&z) > tA(z) for 0 < ¢ < 1; and hence the uniqueness and main properties of
conjugate flows follow immediately by the general arguments of § 3. The conclusion is directly
obvious from the graph of 4(z) as drawn in figure 4, which includes the straight line uz for
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A UNIFIED THEORY OF CONJUGATE FLOWS 623

a supercritical and a subcritical value of #. Since the curve 4 (z) has negative curvature between
asymptotes § for z— 00 and — o for ¢ = — &, it appears that a unique conjugate solution ¢ # 0
always exists. If the primary flow is supercritical (g < ), then the solution of (4.4) is positive and
so u~1A’(¢) < 1, which means that the conjugate flow is subcritical. And if the primary flow is
subcritical (# > ), then the solution is negative and so y~14'(¢) > 1, which means that the
conjugate flow is supercritical.

Ae) )
B
2

|

|

I

|
-hy ¢ (supercrit) 2 (pespro !
T T 19) “z
: f (subqfs:rit.)

|

|
L
o e
| 1 (Iu</uc)
b
! i
I !
| )
|
!
|
I
|

Ficure 4. Graph of the function A(z) including the straight line pz for a supercritical and
a subcritical value of p.

The flow force $is defined as the sum of horizontal momentum flux and pressure force through
a cross-section. Since the hydrostatic law of pressure applies, we have

s = puex+ [ pglh—4) b(s) d, (4.7

where p is the density of the fluid. In view of (4.2) and (4.3) this is equivalent to

h
Slp = %u2)3+f0g(h —y) b(y) dy + (= gh+ e +gho)

= St [ 00) dy+ (— g g+ g 43

Hence we obtain, after using (4.1) and finding that two terms cancel,

G =it |- ‘;ﬁi%) g+ 1ot + gh
= pc2b(hy+2) {A(2) —pz}, (b= hy+2). (4.9)

This result exemplifies the general principle noted in § 3.5: namely, when an expression for flow
force is varied subject to conditions of mass and energy conservation, it takes stationary values
for conjugate flows (i.e. for z = ¢, where ¢ is a solution of (4.4)).
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624 T. B. BENJAMIN

Reference to figure 4 shows that, provided p =+ se, A(z) > pz if z lies in the open interval
between the supercritical and subcritical solutions of (4.4), the latter of which always has a higher
value than the former. It follows from (4.9), therefore, that a subcritical flow always has a larger
value of flow force than its supercritical conjugate.

5. EXAMPLE 2. LAYERED FLUIDS

Systems comprising several fluids of different densities in superposed horizontal layers afford
examples of conjugate flows for which the governing equation (3.1) takes a matrix form. If the
composite fluid has z+ 1 discrete layers and is bounded at top and bottom by fixed horizontal
planes, there are 7 free interfaces and the solution ¢; (¢ = 1,2, ...,n) representing the vertical
displacements of these interfaces may be considered as a vector in a space of n dimensions. In
specific cases a great many conjugate-flow pairs may be possible, so that a provisional ordering
of the possibilities is generally essential as a first step towards obtaining comprehensible
results. Various applications of the abstract theory can be found, depending on a suitable
choice of cone in which the considered solution will lie. The following simple example suffices
to demonstrate principles.

T

%‘3 P3 __._L¢
2

)

ha Pe

| ty

¥ —— 7

e py

¥ PO

Ficure 5. Illustration of three-layer system.

We consider the three-layer model illustrated in figure 5. In the primary state of the system,
the depths of the lower, intermediate and upper layers are 4, /4, and 43, and the respective fluid
densities satisfy p; > p, > p; as required for stability. The bottom is a fixed horizontal plane, and
the upper boundary at height %, + 4,4 k3 above the bottom is also a fixed horizontal plane. The
flow is two-dimensional in a vertical plane, and in each layer the primary velocity is ¢. We
suppose that in the transition to a conjugate flow the lower interface is displaced from the height
hy to the height A, + ¢, above the bottom, and the upper interface is displaced from k&, + 4, to
hy + hy— ¢y (note the minus sign, which simplifies the argument later).

The conditions of energy conservation (Bernoulli’s equation) for each layer give three equations
relating ¢, ¢,, the velocities in each layer and the pressure change at the top or bottom. The
unknown velocities may be eliminated by means of the three mass-conservation conditions, and
the unknown pressure change may then be eliminated among the three resulting equations. In
this way one o btains

el [ i (e I R I e e B 5.1
b = %‘:i;;) ["’2 {1“ (ﬁ?——zf?s)z} *Ps {1 - (/szqsz)z}]’ (5:2)
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A UNIFIED THEORY OF CONJUGATE FLOWS 625

where u = g/c2. This pair of simultaneous equations may be expressed

= u1Ag, with = [951], (5.3)
Do

and the nonlinear transformation A may be considered as a mapping of the plane (uy, u,) into

itself.

We focus attention on the possibility of a conjugate flow in which the lower interface is dis-
placed upwards from its level in the primary flow and the upper interface is displaced downwards.
In other words, we suppose that ¢ € K, where K is the first quadrant, ;, > 0 and u, > 0. It is
readily seen from (5.1) and (5.2) that Aisa positive operator on K: that is,

Aue K if uek.

Thus it appears that the propositions explained earlier concerning nonlinear operators acting
in cones may be applicable. We note also that Ais monotonic, thus Au < Avifu <.

The derivative of A at the zero point & may be understood from the definition of abstract
differentiation noted in § 2. We see that A’(@) is a linear transformation of vectors £, which for
the present purpose are taken in particular to belong to K. From (5.1) and (5.2) it is found that

A'(0) £ = [011 ‘112] [‘gl], 5.4
@)% Qg1 dgo &, (5.4)
. . 1 01 P 1 P
in which Uiy = (J_I__E), o = (_2),
U pi—pa \by By B pr—pa \y
1 p 2) 1 (Pz ps)
oy = ———\7")> Aoy = —+5).
B py—ps (’lz B pa—ps\hy
The eigenvalues of A ’(0), i.e. the values of k for which the equation
< = A'(0) & (5.5)

has a non-trivial solution, are the roots of
det[A’(0) —«I] = 0. (5.6)
Hence the root corresponding to £ € K is found to be
3(a11+ @gp) +AH{E(a11 — 20)* + 12001} = e, say, (5.7)

which obviously is always positive.
According to our general criterion, the primary flow is supercritical or subcritical in the con-
sidered mode accordingly as s < gc or g > pe. And again, as in example 1, it can be seen that

C = J(g/pe) (5.8)

is the velocity, relative to the fluid, of infinitesimal long waves in this mode. Thus the condition
of supercritical flow is ¢ > C, as expected. For the other possible mode, in which the two interfaces
are displaced in the same direction, the long-wave velocity is given by the second root of (5.6) and
is larger than the present C.

Supposing that the primary flow is subcritical (# > p¢), we now show that a conjugate flow
of the considered kind always exists and is supercritical. It is, of course, a fairly simple matter to
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tackle the algebraic equations (5.1) and (5.2) directly, but there is already in this example con-
siderable interest in using the abstract theory. For the norm of planar vectors z we may take

lull = ua| +uals
and for elements with small norms we have, confirming the definition of the derivative of A,

Au = A'(6)u+ o),

where lim Mn =0
Iy —0 ”u”
The assumption g > yc implies that
ptAu—ugK if uek, |u] =r, (5.9)

where 7 is a sufficiently small positive number; and thus the first condition (2.10) of theorem II
(§ 2.2) is provided. For the proof of (5.9) we consider that, for any non-zero element of X, a finite
positive number f,, may be defined as the least value of £ for which u < S€. It is evident that

lu] > (1+8) B8l
where b = max (&£, E5/E) < oo.

Now suppose that (5.9) is not true. We then have, by virtue of the monotonicity of A,

pu < Au < A(Bk) = BuA'(0)E+0(B,E)
= fnbtcd+0(BnE). (5.10)

The remainder » can be made arbitrarily small by taking ||| small enough. Thus, for small ||u|
and g > fic, the conclusion (5.10) contradicts the minimal property of £,,, and so the truth of
(5.9) is established.

We next observe from (5.1) and (5.2) that Au is unbounded in the limit as u, 4 u, approaches
the value %,. A sufficiently small positive number ¢ can certainly be found, therefore, for which

u—ptAu¢K if uek, |u| = hy—o. (5.11)

Furthermore, A is continuous in the region of K where |ju|| < £y— 9. According to theorem II,
this condition tog\ether with (5.9) and (5.11) ensure the existence of a non-trivial solution ¢ of
(5.3) in K. Since A is neither concave nor convex everywhere, we cannot make a simple conclusion
about uniqueness. However, the general argument of § 3.4 concerning the indices of fixed points
in a cone guarantees the existence of a solution representing a supercritical conjugate flow.

An expression for the flow-force difference as a function of ¢; and @, can easily be obtained
by the use of Bernoulli’s equation to eliminate the pressure change at the top or bottom. Hence
a straightforward study confirms the principle that a minimum value of flow force is realized
by a supercritical conjugate flow.

6. ExaMPLE 3. CONTINUOUSLY. STRATIFIED FLUIDS

We consider the parallel flow of a heterogeneous incompressible fluid between fixed horizontal
boundaries y = 0 and y = 1 (figure 6). It is assumed that in the primary state the density p of
the fluid is a non-increasing continuous function of height y, so that the system is statically stable.
In cases where the primary velocity U is non-uniform additional assumptions are needed to
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A UNIFIED THEORY OF CONJUGATE FLOWS 627

ensure stability, but this aspect can be passed over here: a sufficient condition for stability is that
—gd(Inp)/dy > ;(dU/dy)? (see Miles 1963). An approximate account of conjugate flows in
continuously stratified fluids has already been given by Benjamin (1966, § 3.8), in the context of
a theory of internal solitary and cnoidal waves. A more or less complete analogy with the theory
of steady two-dimensional open-channel flows was demonstrated, including the principle that the
range of a parameter (such as the value of flow force) closed by an adjacent pair of conjugate
flows corresponds to a spectrum of periodic waves. The previous discussion was restricted,
however, to states of flow close to critical.

A

— P _—_—

0O “x

Ficure 6. Illustration of continuously stratified fluid.

6.1. Governing differential equation

The most convenient choice of dependent variable is the pseudo-stream-function v (y)
defined by :

Y, = phu, P(0) =0, (6.1)

where « is the (horizontal) flow velocity. In a transition between conjugate flows density is
conserved along each streamline, and this condition may be expressed as

p = p(). (6.2)

The dynamical condition satisfied by conjugate flows is that total head (stagnation pressure) is
conserved along each streamline, thus

H=p+gyp+ 3y = HY). (6.3)
Also, since the flows are horizontal, the pressure p satisfies the hydrostatic law
by = —8p. (6.4)
Differentiating (6.3) and using (6.2) and (6.4), we obtain
W +&9p' (9) —H' () = 0 (6.5)

[cf. appendix 2, equation (A 36)].

The specifications of the primary flow, for which ¢ is a known function ¥(y), say, can be used
to determine the forms of the functions p(y) and H(y) appearing in (6.5), so that the equation
reduces to an identity when ¢ = ¥. Hence a conjugate flow is represented by a solution of (6.5)
differing from ¥ and satisfying the kinematical conditions

¥(0) =0, (1) =¥(1). (6.6)

54 Vol. 26g9. A.
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The problem becomes more clearly defined on the substitution of ¢ = ¥ + j¢, where j stands for
a positive normalizing factor which can be chosen appropriately in particular examples. Then
(6.5) is reducible to the form

Pyy+ & (4, $50) = 0, (6.7)

where 4 is a positive parameter depending inversely on the velocity scale of the primary flow,
and (6.6) becomes

$(0) =0, (1) =0, (6.8)

The nonlinear boundary-value problem expressed by (6.7) and (6.8) has the trivial solution
¢ = 0, which represents the primary flow, and any other solution is significant as representing
a flow conjugate to this.

Although a governing equation in the form (6.7) is an obvious outcome, the detailed reduction
of (6.5) is a somewhat intricate matter. It seems worth while to go into the details, and to clarify
the method of reduction by treating a specific example.

Let Y denote the height of particular streamlines in the primary flow. For this flow (6.4 ) gives

H'(¥) = d{p+gYp(¥) + }PBAP = g¥p'(¥) + Py, (6.9)

and thus we see that in order to reduce (6.5) in any specific case, ¥ and ¥ - as well as p must
be expressed as functions of ¥. The immediate result of substituting y» = ¥ +j¢ in (6.5) is

JPyy = —gyp' (¥ +j9) + H' (¥ +j9) —
and hence the use of (6.9) leads to

JPyy = 80" (P +j){Y (¥ +j8) — 4} + ¥yry (¥ +j¢) — (6.10)

Noting the identitiesy = Y (¥), ¥y (¥) = ¥,, and assuming that the functions p’(y), Y () and
¥, () are differentiable, or at least Lipschitz continuous, we conclude that (6.10) is equivalent
to (6.7), in which f(y, ¢; x) is a bounded function of ¢. By checking dimensions we also see from
(6.10) that f(y, ¢; #) can generally be arranged in the form uf;(y, ¢) +/2(y, ¢) with u = gB/c?,
where ¢ is the velocity scale of the primary flow and f is a constant.

[Note that for certain special choices of primary flow equation (6.7) is linear; but such cases
have no interest in present respects. For example, suppose that p*U = @ (const.) in the primary
flow. Then ¥ = aY, and so Py y = 0. Also,

Y(¥+j¢)—y =—ayp and p'(¥+jg) = p'(ay) = a'p,(y).
Thus (6.10) reduces to ¢, — (ga?p,) = 0. Conjugate-flow pairs do not exist in linear systems,
and such cases are also physically exceptional in other ways (see Benjamin 1966, § 3.9).]
To exemplify the usual case in which the governing equation (6.7) is nonlinear, we take the
specification of the primary flow to be

U=c¢, p =poc—ﬂY’ (6011>
where ¢ and p, are constants. It follows that

W = 2p}op1(1 - e bT);

hence Pyy = —1pdcpe Y = —Lpiop+ 182, (6.12)
2 ,elp)

Y(P)=—-In{l-"—%F 6.13

and (#) = —3in " (6.13)
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A UNIFIED THEORY OF CONJUGATE FLOWS 629

Using (6.12) and (6.13) in (6.10), and taking j = 2p}¢/, we obtain

Pyy + UL (e §) — 1%} = 0, (6.14)
where 1 = gf/c® and the function with argument e#/? ¢ is

(1-2) ln(l——z).

Z(z) = — (6.15)

We note that Z(z) is a positive, monotonic decreasing function for z < 1, and that Z(0) = 1.

6.2. Extension of properties outside range of primary flow

To cover the case of conjugate flows greatly different from the primary flow, allowance must
be made for the possibility that y(y) takes values outside the interval [0, ¥(1)] over which the
primary-flow properties are defined. This means that the conjugate flow partially consists of
an ‘eddy’ of fluid that is not present in the primary flow. An analytical continuation of p(yr)
and H (y) provides a poor physical model, because fluid at the centre of the eddy is then taken
to be lighter than fluid above and this is an unstable situation; so other ways of extending the flow
properties are preferable. Perhaps the best model is given by specifying that new fluid appearing
in a conjugate flow has constant density: thus p = p(0) if ¥ < 0 and p = p{¥P (1)} if ¥ > ¥(1).
This specification is physically reasonable as it reflects the mixing process that is likely to occur
within a closed eddy in practice; and it can be made consistently with the assumption that

fly,¢; p) in (6.7) is a continuous function of ¢. In the example given above, the condition
Y(y) = ¥P(1) for 0 < y < 11is equivalent to

¢(y) = e~ e~ < 1,

Hence, on the assumption that # > 1A% an extension of the function f = uZ (et ¢) — 142 for
¢ > e #Y — e~ can be made such that the modified function is continuous, positive and mono-
tonic for all ¢. The details are immaterial to the existence proof given below, for which we only
need to assume that

S dsp) <o i b > guly), (6.16)
where o, is a finite positive constant and ¢,,(y) is a bounded positive function on [0, 1), repre-
senting some arbitrary degree of penetration into the eddy region. A similar modification can
be made for ¥ < 0, which in the given example means

¢ < —(1—cb),

We assume that

S ¢50) 2 o i ¢ < —gul(y), (6.17)

where ¢,,(y) is bounded and positive on (0, 1].

It may be expected, however, that when g is close to a critical value the conjugate solution ¢
will be small everywhere on (0, 1), and therefore these extensions of equation (6.7) will be
unnecessary. A method for testing the corresponding property of conjugate vortex flows is given
in Benjamin (1971, § 6), and is easily adaptable to the present problem.

6.3. Governing equation in operator form

In order to express the problem in a form to which the abstract theory is applicable, the system
(6.7), (6.8) is recast as the nonlinear integral equation of Hammerstein type

fk% (919, 6(9); 16} 49, (6.18)

54-2
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in which £(y, §) is the triangular Green function

ky,9) =y(1-9) if 0<y<3,
=§(l-y) if F<y<l
This equation is written for short 6= A(u) b (6.18")
and the operator A, written A(x#) when a reminder of its dependence on the parameter x is
needed, may be expressed in the form A = BF, (6.19)
where B stands for the self-adjoint linear operator defined by
Bu(y) = [ Kw,9)ul0) 4, (6.20)

and F denotes the nonlinear operator defined by

Fu(y) = u(y)fy, u(y); n}- (6.21)

The specification that f (y, u; ¢) is a continuous function of y and « ensures that A is a completely
continuous operator in the space of continuous real-valued functions C(0,1) (K (a), p. 350;
K (), pp. 19 and 46). A solution of (6.18) is then twice continuously differentiable and so is
simultaneously a solution of (6.7) and (6.8).

Furthermore, A has a strong Fréchet derivative in all directions of C, which is a completely
continuous linear operator in C (K (), p. 135). In particular, the derivative of A at the zero
point 0 of C, in the arbitrary direction £, is seen to be

A'(0; 1) h(y) = BlA(y).f(y, 0; )] (6.22)
Characteristic values g™ (n = 0,1,2,...) may be defined as those values of g for which the
linear equation h, = A'(0; ) h, (6.23)

has a non-trivial solution #4, € C. (It can easily be confirmed that these characteristic values are
simple.) This equation is the linearized version of (6.18), and its solutions represent infinitesimal
waves of extreme length than can be superposed on the primary flow when its velocity scale takes
particular values. For example, in the case of an exponential density profile considered above,

(0:28) s Just hy = (440~ 16%) Bl
which gives ) = (n+1)2w2 4142, h, =sin(n+1)my. (6.24)

In view of the way the parameter x enters the function f(y, 0; #) [see remark below (6.10)], it
is seen that in general, as in the given example, (6.23) is the inverse of a Sturm-Liouville system,
and so the functions £, are characterized by having exactly z zeros in the open interval (0, 1).
Possible solutions ¢ of the nonlinear equation (6.18) may also be ordered in this sense.

We focus attention on the first mode n = 0, in which like %, a solution of (6.18) has no zero in
the open interval. Our general criterion (§ 3.1) now shows that, with respect to this mode, the
primary flow is supercritical  if  p < pe,) 6.95

suberitical if g > pe.) (6.25)
In the given example these conditions are the same as ¢ > C; and ¢ < C,, respectively, where
C = \J{gf|(m?+£p?)} is the velocity of infinitesimal long waves in the first mode [cf. Benjamin

1966, equation (4.16)].
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6.4. Existence of conjugate flows

We assume that, as in the given example, the continuous function f(y, «;z) is positive and
offop > 0 for 0 < y < 1, u > 0 and all . The Green function £(y, §) also is positive on the open
square 0 < y < 1, 0 < §# < 1 and vanishes for y = 0 and y = 1. Hence we see that A transforms
non-negative continuous functions #(y) into non-negative, twice differentiable functions Au(y)
which vanish at both end-points of [0, 1] and are negatively curved on the open interval. Thus
these functions belong to the cone K < C of functions »(y) that are convex upward on [0, 1] and
satisfy v(0) = v(1) = 0 (cf. K (¢), §7.4.6). By convex upward we mean that for any pair of points
Y1, Yo from [0, 1] and any number « such that 0 < & < 1, we have

v{oys+ (1 —a) o} > av(yy) + (1 —a) v(g,).

Convex functions are necessarily continuous, but not necessarily continuously differentiable: thus
the closure of K includes functions with upward pointing corners. Evidently X is transformed into
itself by the completely continuous operator A, and we note that z, defined by (6.23) is an element
of K. Although this cone is not solid in the space C, the arguments given at the end of §3.4 establish
the applicability of the conclusions that were drawn from index theory earlier in § 3.4 [e.g. the
indices y; appearing in (3.24) or (3.25) can be evaluated by the standard formula (2.15)].

Suppose first that the primary flow is subcritical (# > pe). As considered in § 3.1, let A, denote
the eigenvalue of A’(0;u) to which an eigenvector & € K corresponds, thus

Ag§ = A'(0; ) E.
The properties (i) to (iv) of linear positive operators that were explained at the end of § 2.1 and
discussed further in § 3.1 may be confirmed for the present A’(6; x): in particular, (i) the positive
eigenvector § exists and (iii) is unique. We also note that A’(0; ) is self-adjoint with respect to

the positive weight function f;, = f(y, 0; #) [see context of (2.21)]. Taking account of the assumed
form of dependence on z, and using the property of self-adjointness, we deduce

0 < <&, hods, = <& A (O; ) hody, < <&, A'(0; 1) oy,
= Choy A’ (05 1) D4y = AgClgy Dy

which shows that A > L : (6.26)

Thus the condition of theorem III (§ 2.2) regarding the eigenvalue is satisfied. And we know, by
the property (iii) already noted, that A’(6;#) has no positive eigenvector corresponding to an
eigenvalue of unity.

The remaining condition of the fixed-point theorem may be established by use of the assump-
tion (6.16). The upward convexity of any element » of K implies that v — 00 on (0, 1) if |[v]| -> oo,
where ||v]| is the norm for C:

o] = max |o(y)].
yel0,1]
Hence (6.16) implies that in the limit f{y, v(y); #} nowhere exceeds o,, on (0, 1). It follows from
the continuity of fthat A has a strong asymptotic derivative with respect to the cone K, and this
is a linear positive operator A’(co) having the property that

A)w<ow if wek. (6.28)

The positiveness of f(y,v; ) for all v = 6 further implies that A’(c0) has an eigenvector in K
(K (c), §2.2). Let A, denote the eigenvalue of A’(c0) to which this positive eigenvector corre-
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sponds. Since 1/m? is the eigenvalue of B to which the positive eigenvector sinty corresponds,
we readily find from (6.28), using the self-adjointness of B, that

Ao <1 if o, <2 (6.29)

e

Thus the condition of theorem III regarding the eigenvalue A, is satisfied if o, < ™2

The theorem establishes, therefore, that if the primary flow is subcritical and if o, < 72 in
the specification (6.16), then equation (6.18) has at least one non-zero solution in K. Thus a
conjugate flow exists whose streamlines are displaced downwards from their levels in the primary
flow [i.e. ¥ = ¥ +j¢ > ¥on (0, 1)]. Uniqueness can be proved only with an additional assump-
tion, and this aspect will be discussed presently. If F and hence A is monotonic, however, the
general arguments of § 3.4 show that among a multiplicity of fixed points in K there is at least
one for which A, < 1, where A, is the eigenvalue of A’(¢; 1) to which a positive eigenvector
corresponds. The fact that A is monotonic also implies that A’(¢; u) is a positive linear operator,
being self-adjoint with respect to a positive weight function. Hence an obvious adaptation of the
argument used above to prove A, > 1 shows that the fixed point for which A, < 1 represents
a supercritical conjugate flow (i.e. # would have to be increased to make this flow critical).

If the function f (y, u; ) is monotonic decreasing in u, as in the given example, it can be shown that
the non-zero solution ¢ is unique. In this case F and hence A is a concave operator, and so the
demonstration of uniqueness given in § 3.4 may be applicable. In § 3.4, however, it was supposed
additionally that A’(¢;u) is self-adjoint with respect to a positive weight function, which here
requires that f > — ¢f, [see (6.30) and (6.31) below]. A more general conclusion is obtained as
follows. An expression defining the linear operator A’(¢; u) is found to be

A'(@5 )0 = BL(f+¢/y) ), (6.30)
where f stands for f{y, ¢(y); ¢} and o )
_ |, ¥z

By = [ o L:M. (6.31)

Although A’(¢; p) is not necessarily a positive operator on K unless /> — ¢f ;, we may assume
that it nevertheless has a positive eigenvector 7 corresponding to an eigenvalue A, which is higher
than any other eigenvalue. Considering that ¢ = A¢ = B(f¢) and using the self-adjointness
of B, we deduce

(1=2,) CFi 83 = (i BUB) — (F, B+ 8>
=B B =~ [ By =5, sy (33

In the present case we have that ¢f; is non-positive, and we may assume that 7 is positive on
(0,1) and that ¢f; is not zero everywhere on (0, 1). Hence s > 0 and so A, < 1. Recalling § 3.4,
we conclude that y = 1, where y is the index of the non-zero fixed point ¢, and therefore,
according to theorem A (§3.4), the fixed point is unique. Thus only a single conjugate flow is
possible in the present special case. (The impossibility of a non-positive solution is evident from
the simple considerations pointed out in § 3.2.)

In the case of a supercritical primary flow (u < pe), the existence of a conjugate flow may be
established by means of theorem IV (§ 2.2). We put ¢ = — ¢ and consider the possibility of a non-
positive solution ¢ by assuming @ € K. The equation for @ is ¢ = A@, where A is the positive
operator defined by Au = — A(—u) for u € K. An argument corresponding to that leading to
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(6.26) shows now that A, < 1, and thus one condition of theorem IV is satisfied. Next it may be
shown that the operator A has a strong asymptotic derivative with respect to the cone K, and by
virtue of the condition (6.17) this has the property

A'(0)w > oy Bw if wek. (6.33)
Assuming that oy > T3, (6.34)

and recalling that fis a bounded function (see § 6.2), we may conclude that A’(c0) has an eigen-
vector in K corresponding to an eigenvalue A,, > 1. Also, A’(c0) does not have an eigenvector
in K corresponding to an eigenvalue of unity. Thus all the conditions of theorem IV are satisfied
and the existence of a conjugate flow follows.

As was explained in § 3.4 concerning the interpretation of theorem B, the deduction just made
can be supplemented by the statement that at least one non-zero fixed point ¢ e K exists for
which A’(g;p) has an eigenvalue A4 > 1. Hence we may infer that a subcritical conjugate flow
exists. If, as in the given example [see (6.14) and (6.15)], f(y, —u;u) is a monotonic increasing
function of u, then A is a convex operator on K. Consequently, as explained in § 3.4, the fixed
point @ is unique if no eigenvalue of A’(¢; ) other than A, can exceed unity. Without going
into details, we note that this condition is provided if

Sf+uf, < 4m? for u<O. (6.35)

The significance of the number 41?2 appearing here is that (47?)~1 is the second eigenvalue of B
defined by (6.20) (cf. Benjamin 1971, § 5).

6.5. Flow force

Here we illustrate the general theory of flow-force differences between conjugate flows that
was developed in §3.5. In particular, a detailed application is made of one of the variational
proofs outlined in § 3.5, namely that establishing the existence of a supercritical conjugate flow
corresponding to a subcritical primary flow. We now consider the solution ¢ of (6.18) as an
element of the Hilbert space L,(0, 1). The cone K previously defined in C is evidently a cone in
this space also. By virtue of the fact that the continuous function fis bounded, F defined by (6.21)
is a continuous nonlinear operator acting in L,; and the linear operator B defined by (6.20) is
completely continuous acting from L, into C < L, (K (), p. 19). It follows that the Hammerstein
operator A is completely continuous in the same respect. Although A is not a potential operator,
the problem can be put into variational form by means of the well-known device mentioned
in §3.5 (K (b), p. 304; Vainberg 1964, ch. 7).

The self-adjoint linear operator B is positive in the special sense that

{u, Bu) >0 for wue Ly u=*0, (6.36)

which corresponds to the fact that the eigenvalues (mm)2 (m = 1,2, ...) of B are all positive. It
follows that a self-adjoint operator B%, positive in the above sense, can be defined such that
Bi(Bu) = Bu [and so (u, Bu) = {Btu, Btu)]. In fact, since the set of eigenvectors of B is just
the complete orthogonal set of sine functions vanishing at the end-points of [0, 1], we see that

“ ® sinmTry sinmTr
ky,9) =2 X “—;ylz;;z !

, (6.37)
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and hence that the explicit form of B? is given by replacing £ in (6.20) with
N ® sinmy sinmmy

1 = 2 _—_——

ky(9,9) mzzl mt

(cf. K (b), p. 51). This kernel has a logarithmic singularity on the diagonal but still satisfies
a sufficient condition (K (), p. 19) for the operator B# to be completely continuous in L,.
Since Biu = 0 only if u = 0, it follows that if we put ¢ = B#{ equation (6.18) is reducible to

{ = B3F(B(). (6.38)
That is, if { is established as a solution of (6.38), then B3¢ is a solution of (6.18). We consider
a modification of (6.38) in the form ¢ _ BF(| BY)). (6.39)

The operator on the right-hand side of (6.39) is completely continuous, and it differs from that
on the right-hand side of (6.38) only if B3¢ takes negative values. But corresponding to any
non-zero solution of (6.39) we have

¢ = B} = BF(|B¥{|)e K,
by virtue of the fact that B maps non-negative functions into the cone K previously defined.
Thus, for the study of solutions of (6.18) that are non-zero elements of K, (6.39) suffices in place
of (6.38). w “
We define W) = [ "Pllzl)dz = [ "2l 70, |l dz, (6.40)

and observe that the operator on the right-hand side of (6.39) is the gradient of the functional
1 :
Q(u) =f W (Btu) dy ‘ (6.41)
0

(K (4), p. 71). Equation (6.39) is therefore equivalent to grad A({) = 6, where
Alu) = ¥u,u) —2(u). (6.42)

The argument outlined in §§ 2.5 and 3.5 may now be used. By virtue of the complete continuity
of B, the functional (6.41) is weakly continuous in L. Also, {u, u) = |u||}, is weakly lower semi-
continuous and hence so is /A (u). It follows that on any bounded and weakly closed subset of L,,
A has an infimum which it achieves (Vainberg 1964, p. 78). And if the infimum is achieved at an
interior point ¢, then A(&) is a minimum in the usual sense and therefore grad 4({) = 6. Con-
sidering the closed ball 0 < |Ju| < Rin L,, we thus see that the existence of a non-trivial solution
of (6.39) is proven if it can be shown, first, that 4(f) = 0 is not a minimum and, secondly, that
A(u) is positive on the spherical boundary |ju| = R.

It was explained in §3.5 that A(#) cannot be a minimum if the primary flow is subcritical
(Ay > 1). For then A can be shown to take some negative values at points infinitesimally close
to 0, specifically points on the line ¢4, where § is the positive eigenvector of A’(0; u). We note
that the modification of the operator entailed in (6.39) does not affect this conclusion. Thus the
first condition of the existence theorem is provided by assuming the primary flow to be subcritical.

The assumption (6.16) leads easily to the inequality

W(w) < W(gn) =30 ngn+ 30,0 (6.43)
if f(y,u; u) is a monotonic decreasing function of 4, as in the given example. Otherwise an upper

bound for W (u) can still be found in this form, namely as the sum of 0, 4* and a fixed function.
Hence we obtain from (6.42), using the self-adjointness of B?,

A(u) > ¥u, uy—30,{u, Bu) +a, (6.44)
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where a is a fixed number. The further inequality
{u, Buy < % u,u)

appears as a property of the operator B when the kernel & is expressed in the form (6.37) and the
L, (Plancherel) statement of Fourier’s theorem is considered. Accordingly it follows from (6.44)
that if o, < T2 [cf. (6.29)], then A{x) > 0 on a sphere ||| = R for which R is sufficiently large.

Thus the final condition of the variational existence theorem is satisfied if o, < ™2, We
conclude that a non-zero element ¢ of L, exists satisfying (6.39), and consequently also (6.38), so
that ¢ = B¥{e K is a solution of the original problem. We know that

A(g) = min A(u) < 0 (6.45)
0<juiz, <R -
and by the principle of minimum flow force (§ 3.5) the conjugate flow represented by ¢ and ¢
must be supercritical. If the solution ¢ is not a unique fixed point of A in K, then the present
result enables us to define the principal conjugate as the necessarily supercritical flow that realizes
the absolute minimum of A.

It remains to show that A is in fact proportional to the flow-force difference between the
conjugate and primary flow. By virtue of being a solution of (6.18), ¢(y) is a twice differentiable
function. Hence, putting { = B¢, where B—# is the self-adjoint pseudo-differential operator
such that B¥(B~i¢) = ¢, we obtain

&0 = Bz~ [ pBgy
= [ 6= ay = [ B34

(For the last equality the boundary conditions (6.8) satisfied by ¢ are used in an integration by
parts.) Thus an expression for A({) is seen from (6.42) to be

1
A(f) = fo{%ﬁ— W(g)idy = A,(¢), say; (6.46)
and we may express the differential equation (6.7) as
o (ol ol
—grad A =—(———)—— = 0, 6.47

where I(y, ¢, ¢,) denotes the integrand in (6.46). That is, (6.47) is the Euler-Lagrange equation
for the functional 4,(¢).

Now, the flow force § is defined as the sum of horizontal pressure force and momentum flux
through a cross-section of the flow, thus

1
s=[ v (6.48)
Using (6.3) to eliminate the pressure p, we obtain from (6.48)
1
S = [ A=) + 13- ap )}, (6.49)

which expresses § as a functional of the pseudo-stream-function (). The differential equation

(6.5) satisfied by ¥ is —grad S(y) = 0; - (6.50)

55 Vol. 269. A.
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and we recall that equation (6.7) was obtained by putting ¢ = ¥ +j¢ in (6.5) and subtracting
the same equation for the primary solution ¥. That is, we have

gradS(‘P+j¢) —grad S(¥) = jgrad 4,(¢). (6.51)
From (6.51) and the fact that 4,(6) = 0 there follows
JA4(9) = S(P+jg) —S(¥P), (6.52)

which is the required identity.
The result (6.45) is thus seen to imply that, corresponding to a subcritical primary flow, the
principal conjugate flow manifests a minimum value of § less than the value for the primary flow.

I am grateful to Professor W. N. Gill and his colleagues at Clarkson College for their encourage-
ment and for providing pleasant working conditions that were greatly advantageous to the
writing of this paper. I am also indebted to Dr J. L. Bona for helpful advice on mathematical
details.

ArPENDIX 1. PROOFS OF THEOREM A AND THEOREM B

We recall from § 3.4 that in the statements of these theorems A is a completely continuous
operator which maps the whole of the Banach space £ into a cone K < E, and which is identical
with the completely continuous positive operator A on K [see (3.18) and (3.19)]. Also S, and S5
stand for spheres |4 = 7 > Oand |u| = R > r centred on the point 6. The first theorem is restated
as follows for easy reference.

THEOREM A. Let the conditions of theorem 1 (§ 2.2) be satisfied, or let the conditions of theorem 111 (§ 2.2)
be satisfied and in addition let the cone K be normal. The there exist in E spheres S, and Sg on which the
rotations of the completely continuous vector field I — A are respectively

v(S:) =0, (A1)
and v(Sg) = 1. (A2)

Suppose first that the conditions of theorem I are satisfied. We then have

u—Au¢K on S, (A 3)

This property is obvious for points on S, such that u ¢ K, since by definition Au € K for all u € E.
And on the intersection of §, with K the property is provided by the condition (2.8) of theorem I.
According to (A 3) none of the vectors « — Au on S, vanishes, and none has the same direction as
any element of the cone. It follows that, as expressed by (A 1), the rotation of the completely
continuous vector field I— A on S, is zero. '

On the larger sphere S}, the field turns out to be homotopic to I, and therefore its rotation is
equal to unity. To establish this it is sufficient to show that the completely continuous vector fields

F(u,t) = u—tAu
do not vanish anywhere on Sp for 0 < ¢ < 1. We assume to the contrary that there exists a vector
o€ Sg such that F(uy,t) = ¢ and so 4y = tAuy € K.
By the definition of A [see (8.19)] this implies that Au, = Auy, and therefore
t(Auy—u,) = (1—=1t)u,€ K,

which contradicts the condition (2.9) of theorem I. Hence we conclude that (A 2) holds.
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Suppose next that the conditions of theorem III are satisfied, and that K is a normal cone.
We may establish (A1) by showing that, if 7 is sufficiently small, there cannot exist a vector

u, € S, such that wy—Auy, = af (a3 0), (A4)

where £ (||£]| = 1) is the normalized positive eigenvector corresponding to the eigenvalue A, > 1
of the strong Fréchet derivative A’(6) with respect to the cone. The impossibility of (A 4) on S,
means first (in the case a = 0) that the field I— A does not vanish and therefore its rotation is
defined, and secondly (in the case @ > 0) that no component of the field has the same direction
as the positive vector £. Hence the rotation of the field is zero.

We prove this by contradiction, assuming the existence of a vector , € S, which satisfies (A 4).
Since Au, € K by the definition of A, it then follows from (A 4) that 4, € K and so Au, = Au,.
Thus (A 4) amounts to

Uy —Auy = af  (a > 0),} (A5)
with ueK (|uy =r).
And on the substitution of Y=u+ /\a—il, (A6)

which is a positive vector since A, > 1, the equation in (A 5) becomes

Y- A(O)Y = Auy—~ A'(0) 1y, | (A7)
Now, a condition of theorem III is that A’(6) does not have a positive eigenvector to which
an eigenvalue of unity corresponds, and this implies that a number & > 0 can be found such that

lg—A'@O)¢] zelyl if yek, (A8)
Also, according to the definition of a strong derivative with respect to a cone [see sentence
following (2.3)], a number p(p) > 0 can be found such that |4 = r < p(p) implies

| 4wy — A" (O)w]) < pofjug| if v, € K, (A9)
where p is a given positive number. Hence (A 7) shows that

1ol <plul if wmek, 0<r<p(p). (A10)

But (A 6) also implies that ¢ —u, € K, and therefore, since the cone K is normal (see remarks
following the definition of a normal cone in § 2.1), we have

NIgl > ] i wek. (A11)

The inequalities (A 10) and (A 11) are contradictory if the arbitrary number p is given any
value satisfying p < N-1. Thus the impossibility of (A 5), and consequently of (A 4), is demon-
strated ifr < p(p). This completes the proofof (A 1) under the second of the alternative conditions
of theorem A.

To prove (A 2) under these conditions, we consider as before the completely continuous vector
fiel
clds Flu,t) =u—tAu (0<t<1)
on Sg, which is taken to be some sufficiently large sphere; and we establish the homotopy of
I— A and I on Sg by showing that F cannot vanish for 0 < ¢ < 1. Again the proof is by contra-
diction: that is, we assume a vector u, to exist such that u, = ¢Au,, which at once implies that

4y € K and so 4y = tAu, (A12)
for some value of ¢ satisfying 0 < ¢ < 1.

55-2
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Now, a condition of theorem III is that the strong asymptotic derivative A’(c0) with respect
to the cone has no positive eigenvector corresponding to an eigenvalue greater than or equal to
unity, and this implies that a number # > 0 can be found such that

g~ 24" (@) o] > fllug] i weK, 0<t<I. (A 13)

Also, by the definition of A’(c0) [see (2.5)], a finite number Z can be found that is sufficiently
large for |uy| = R > Z to imply

A= A'(0) 1] < 3plua] i o K. (A14)
Combining (A 13) and (A 14) with the triangle inequality for norms, we obtain

[[ug— tAug| > |ug— tA’ (00) uy|| —t|| Auy — A’ (c0) |
>4

B —%) [ue| > 38R (A15)
if wek, 0<t<l, R>ZA.

Thus an obvious contradiction of (A 12) is presented if we take R > #, and hence we conclude
that (A 2) holds. The proof of theorem A is now complete.

Theorem B can be proved similarly. Under the first of the alternative conditions, the properties
(8.22) and (3.23) are deducible in exactly the same way as (3.21, A 2) and (3.20, A 1) under the
first alternative for theorem A: that is, the argurrients respecting S, and Sy are simply inter-
changed. For the proof of theorem B under the second of the alternative conditions, the methods
used above can be adapted without requiring any essentially new ideas.

APPENDIX 2. THE VARIATIONAL PROPERTY OF CONJUGATE FLOWS

Here we examine a principle introduced in § 3.5, namely that conjugate flows in frictionless
systems generally have the property of making an expression for flow force stationary. Examples
of this property were considered in §§ 4 and 6.5, and various others can be given (e.g. axisym-
metric vortex flows: see Benjamin 1962). Our purpose is to develop a general argument showing
why the property arises.

By definition conjugate flows are ¥-independent, but the present issue is essentially connected
with the problem of steady flows depending on x, i.e. the problem expressed in one possible form
by (1.1). A model with an ample degree of generality is given by supposing that the hydro-
dynamical equations lead, under the hypothesis of steady flow, to a nonlinear elliptic equation
of second order, and that this equation has a form derivable from a variational principle. The
physical variable satisfying the equation is denoted by ¥(«, y), which could be (but is not neces-
sarily) a stream-function; and the independent variable y is taken to be a scalar, i.e. a single
coordinate sufficient to describe the cross section of the flow. (It is a simple matter to extend the
following argument to cases where two coordinates are needed to describe the cross-section.)
The boundary conditions are taken, for example, to be that

Y(x,0) =0, (x,1) = const., (A 16)

and that ¢ is periodic with respect to x on an interval [0, /]. We note that problems involving free
boundaries can generally be put into a form with fixed boundary conditions by a suitable choice
of variables (see Benjamin 1966, § 3.1): these boundary conditions may not be the same as (A 16),
but with obvious modifications the following argument will still carry through. We also note that
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for problems in which conjugate flows are representable by finite-dimensional vectors (e.g. the
problem of discretely stratified fluids), the present theory may be made directly applicable by
considering them as extreme examples, given by taking a limit in which the primary fluid
properties (e.g. density) become piecewise constant with discontinuities at certain interfaces
(cf. Benjamin 1966, p. 263). Thus, in consideration of these various extensions of the argument,
a very wide range of problems is covered in principle.

According to our assumptions there is a functional

L
1= [ [ e dret (A
whose Euler-Lagrange equation,
0 (oI o (0F\ 0oF
0 = 5aloq) i o) 2= ©

is the second-order differential equation in question. Note that #—and hence the coefficients

(A18)

of (A 18)—cannot depend explicitly on x because of the periodicity condition or, what amounts
to the same thing, because the prescribed basic properties of the flow system are uniform in the
x-direction. A precise domain of definition for the functional /7 need not concern us here, since
the aim is not to answer questions of the existence of solutions. We assume that ¢ is a ‘classical’
solution of (A 18) and the boundary conditions.

Defining

oI o5
P:J__ oo =Wy A1l9
we find directly that %~ %% = -y, E(Y) = 0. (A 20)

But 0P/ox = 0Q/dy is the necessary and sufficient condition for Pdy+ @dx to be an exact
differential, that is, for the line integral

[ (Pdy+Qdx) (A21)
to be independent of the path between any two points in the flow domain.

So far we have considered the mathematical problem in abstract terms, but at this last step
the essential connexion with a momentum principle may be appreciated. For it appears that the
only physical principle expressed non-trivially by the invariance of a line integral like (A 21) is
the one for momentum conservation respective to the x-direction (the conservation in steady
flows of mass, energy flux and—in the case of swirling flows—angular momentum, for instance,
are all expressible by a trivial form of such an integral, where the integrand is identically a total
differential). If y is a Cartesian coordinate this principle is expressed by the invariance of

J{(p+pe?) dy — puvdsi, (A22)
where « and v are the velocity components respective to ¥ and y, p is pressure and p is density
(cf. Benjamin 1966, p. 245). Thus p + pu? must be proportional to P, and — puv to @, in the abstract
statement of the problem. Admittedly this is a roundabout way of looking at the matter. In a
specific application one would start rather with the physical principle, then express P = p + pu?
and ¢ = —puv in terms of the single dependent variable ¥ and its derivatives, and finally use
oP[ox = 0Q|dy to obtain the governing equation for ¥, after which one might recognize a varia-
tional principle. But the present approach emphasizes the generality of the following conclusions.

Now, flow force is defined by '

I RETGLY (A23)
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and from what has been said it follows that, except perhaps for a constant factor which would be
immaterial to the gist of our argument, we have

s~ [ P vt i, (A24)
0

where P is defined by the first of (A 19). Using (A 18) and the boundary conditions (A 16), we
may readily confirm from (A 24) that dS/dx = 0, which is an obvious physical property of flow
force. Note, however, that the fact dS/dx = 0 is not by itself sufficient to establish (A 18) from
(A 24), since it leaves the alternatives that & () = 0 or that & (y) and ¥, are orthogonal as
functions of  on [0, 1] (cf. Benjamin 1966, p. 246).

In the particular case of ¥-independent flows, i.e. ¥ = ¥(y), flow force is given by

"1

§=| 1n.92v,) dy, (A 25)

where according to (A 24) and (A 19)
Iy, 9, %) = P(4,4,0,¥,) = I (4,%,0,4,). (A 26)

Hence (A 18) shows that the ordinary differential equation satisfied by ¥(y) is

d ( ol ) ol

——)=-= =0, A 27

ay\op,) o A2

which is just the Euler-Lagrange equation for the functional (A 25). Thus it appears, as antici-
pated, that x-independent solutions ¥ (y) which represent conjugate flows are extremals of the
expression for flow force as a functional of ¥ (y).

This conclusion is obviously unaffected if we put ¥ (x,y) = ¥(y)+ ¢(x,y), where P(y) is
a known function representing a primary flow, and we consider /7 and § as functionals of ¢.
The null solution ¢ = 0 is then an extremal of /7 and S, as also is a non-trivial ¥-independent
solution, ¢ = ¢(y), of (A 27). This idea was exemplified in the discussion at the end of § 6.5.

The following fact introduced into the general conjugate-flow theory (§ 3.5) was also illustrated
in § 6.5. For any problem of the present type, suppose that the system comprising a differential
equation and boundary conditions is recast in an operator form derivable from a variational
principle posed in respect of the Hilbert space L,. Then the functional in question is defined on
a much wider class of functions than is meaningful for the original form of the problem. But in
the case of a solution, which has differentiability properties not common to the whole class from
which it is drawn, this functional generally represents the same physical quantity as the functional
with narrower domain of definition whose Euler-Lagrange equation is the original differential
equation. In §6.5 this idea was demonstrated with regard to the variational principle for
x-independent flows, and we may illustrate it as follows with regard to the more basic piece of
theory outlined above.

Suppose that I'y(¢) = II(¥ + ¢) — II(¥) has the form

16 = [ firn oz si- [ Pz azlasa, (A2

where D denotes for short the same domain of integration as in (A 17). Also, 7(y) and s(y) are
positive functions on [0, 1], and F(y,z) is a Lipschitz-continuous nonlinear function of both

variables such that F(y, 0) = 0 and
F(y,2) < a(y) +0|2], (A29)
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where a(y) € L,(0,1) and b is a positive constant. The Euler-Lagrange equation for I} is

Lp=F (y’ ¢)’ }
with =L = 1Gs0+ (58y) >

and the given boundary conditions are such that this elliptic differential operator is self-adjoint
on D, Itis well known that the inverse, # say, of # is a linear integral operator whose kernel £ is
the Green function satisfying Lk(x,y; %,§) = §(x—£).0(y—7) and the boundary conditions.
Thus & (#¢) = ¢, and Ais also self-adjoint on D. An operator equation representing the hydro-
dynamical problem is therefore ¢—BF = 0, (A31)

where F¢ stands for F{y, ¢(x,y)}, considered as a transformation in L,(D). In this space F is
a continuous and bounded operator by virtue of the condition (A 29); and hence, since & is
completely continuous (e.g. see K (8), p. 19), the nonlinear operator ZF appearing in (A 81) is
completely continuous.

The left-hand side of (A 31) is not the gradient of any functional, but we may proceed by using
the same device as in § 6.5. It is easily seen that % is a positive operator in the Hilbert-space sense
(cf. second paragraph of § 6.5), and so there exists a self-adjoint completely continuous operator
%% definable as the principal square-root of %, i.e. such that #*(%tu) = HBu if u € L,(D). Also,
Bru = 0 only if u = 0. Hence, putting ¢ = #%{, we obtain from (A 31) the equivalent equation

(A 30)

{ —RBIF (BYC) = 0, (A 32)
which is also expressible as grad T(2) = 6,
BY
where Iy(Q) = f {%«;‘2 —J‘ F(y,2) dz} dx dy. (A 33)
D 0

Thus the existence of a solution of the original problem might be proved by establishing a non-
zero stationary point of this functional in L,(D). [Note, incidentally, that the existence problem
may also be approached through a study of the functional I'; defined by (A 28). The type of
functions considered in the classical calculus of variations is too restricted to be useful for this
purpose; but the variational principle could helpfully be posed in respect of one of the so-called
Sobolev spaces. This is the collection of functions which have generalized partial derivatives and
satisfy the boundary conditions in a generalized sense, and whose norm is given by the square root
of the positive integral (A 34) below (cf. Berger & Berger 1968, § 4.3). In this approach the fore-
going restrictions on F(y, z) can be relaxed. The Sobolev-space method was not used in this paper
becauseitseemed ratherfarremoved from other methods that were needed, but it offersadvantages
that may be valuable in further studies of the conjugate-flow problem and related wave problems.]

The present aim is simply to confirm that Iy (¢) and I',(§) are equivalent if { is a solution of
(A 32), so that ¢ = #*{ is a solution of (A 31). By virtue of a well-known property common to
linear operators such as # (the inverses of elliptic differential operators), the result

¢ = BF$ ¢ L,(D)
implies that ¢ has finite first partial derivatives. Hence, by the first assumption made about
F(y, z) after it was introduced in (A 28), the function F¢ is Lipschitz continuous. And from this

fact together with (A 31) it follows that ¢ has finite second partial derivatives, being therefore
a classical solution of the original boundary-value problem. Thus we have for sure that

1= fD(rngi +5¢2) dxdy = L}gﬁ,f ¢ dxdy (A 34)
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is defined in both forms, where the second follows from the first after an integration by parts.
Putting ¢ = #*¢ and using the self-adjointness of %%, we now find that

? =f (B¥) L (B dxdy =f CF(#E) dxdy =f $2dxdy. (A 35)
D D D

In the light of (A 34) and (A 35), the functionals I';(¢) and I,({) are seen to be equivalent in
the case of a solution, as expected.

As was shown earlier, the variational principle respecting the flow force of conjugate flows is
obtained simply by ignoring x-dependence in the present variational principle (i.e. I’/ reduces
to the flow-force difference A). The present conclusion also confirms, therefore, that equivalent
expressions for flow force are given by the stationary functionals in the original and in the
compact-operator form of the conjugate-flow problem.

Finally, let us reconsider the example of continuously stratified fluids, for which the theory
of conjugate flows was discussed in § 6. In terms of a pseudo-stream-function ¥(x, ) such that

% = —p%l}, 'ﬁy = p%u,
we have P =p+pu* =H@) + 55— vz) —gyup(¥),
Q = —puv = ¢i¢y>

where the total head H and density p can be considered as functions of ¢ alone. Hence the
equation 0P[dx = 9Q)/dy established by momentum considerations leads immediately to

Ay +gyp' () —H' () = 0 (A 36)

[cf. Benjamin 1966, equation (2.13); Yih 1965, p. 76, equation (10)]. If alternatively the actual
stream-function is taken as the dependent variable, the same argument leads just as directly to
a rather more complicated second-order nonlinear equation, commonly called Long’s equation
[Benjamin 1966, equation (2.8); Yih 1965, p. 76, equation (11)]. Again, if the height # of the
streamlines in a primary x-independent flow is taken as a ‘semi-Lagrangian’ coordinate and
their height in the actual flow, say y(x, %) is taken as the dependent variable (see Benjamin 1966,
§ 3.1), this argument leads to the correct equation satisfied by y(x, 7). The equation is also obtain-
able from the variational principle 817 = 0, after the integrand (A 37) below has been re-expressed
in the new variables and dx dy has been replaced by y, dy dx. The case of a free upper boundary,
which is defined by 5 = 1 even though y(x, 1) varies, is then covered quite simply.
The functional for which (A 36) is the Euler-Lagrange equation is (A 17) with

S =H) + 32+ V7)) —gyp(¥) (A37)

(cf. Long 1953, p. 48). It is curious that the second and third parts of this integrand represent
the difference between the kinetic-energy and potential-energy densities, thus at first sight
suggesting some direct connexion with Hamilton’s principle: a tentative interpretation in this
direction was proposed by Long. But the whole integrand represents the quantity p + p(u?+ v?)
which seems to have no immediately physical significance except when v = 0, in which case its
integral over y is flow force.
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